Metamath Proof Explorer


Theorem lmodvscl

Description: Closure of scalar product for a left module. ( hvmulcl analog.) (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmodvscl.v V = Base W
lmodvscl.f F = Scalar W
lmodvscl.s · ˙ = W
lmodvscl.k K = Base F
Assertion lmodvscl W LMod R K X V R · ˙ X V

Proof

Step Hyp Ref Expression
1 lmodvscl.v V = Base W
2 lmodvscl.f F = Scalar W
3 lmodvscl.s · ˙ = W
4 lmodvscl.k K = Base F
5 biid W LMod W LMod
6 pm4.24 R K R K R K
7 pm4.24 X V X V X V
8 eqid + W = + W
9 eqid + F = + F
10 eqid F = F
11 eqid 1 F = 1 F
12 1 8 3 2 4 9 10 11 lmodlema W LMod R K R K X V X V R · ˙ X V R · ˙ X + W X = R · ˙ X + W R · ˙ X R + F R · ˙ X = R · ˙ X + W R · ˙ X R F R · ˙ X = R · ˙ R · ˙ X 1 F · ˙ X = X
13 12 simpld W LMod R K R K X V X V R · ˙ X V R · ˙ X + W X = R · ˙ X + W R · ˙ X R + F R · ˙ X = R · ˙ X + W R · ˙ X
14 13 simp1d W LMod R K R K X V X V R · ˙ X V
15 5 6 7 14 syl3anb W LMod R K X V R · ˙ X V