Metamath Proof Explorer


Theorem lmodlema

Description: Lemma for properties of a left module. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses islmod.v V=BaseW
islmod.a +˙=+W
islmod.s ·˙=W
islmod.f F=ScalarW
islmod.k K=BaseF
islmod.p ˙=+F
islmod.t ×˙=F
islmod.u 1˙=1F
Assertion lmodlema WLModQKRKXVYVR·˙YVR·˙Y+˙X=R·˙Y+˙R·˙XQ˙R·˙Y=Q·˙Y+˙R·˙YQ×˙R·˙Y=Q·˙R·˙Y1˙·˙Y=Y

Proof

Step Hyp Ref Expression
1 islmod.v V=BaseW
2 islmod.a +˙=+W
3 islmod.s ·˙=W
4 islmod.f F=ScalarW
5 islmod.k K=BaseF
6 islmod.p ˙=+F
7 islmod.t ×˙=F
8 islmod.u 1˙=1F
9 1 2 3 4 5 6 7 8 islmod WLModWGrpFRingqKrKxVwVr·˙wVr·˙w+˙x=r·˙w+˙r·˙xq˙r·˙w=q·˙w+˙r·˙wq×˙r·˙w=q·˙r·˙w1˙·˙w=w
10 9 simp3bi WLModqKrKxVwVr·˙wVr·˙w+˙x=r·˙w+˙r·˙xq˙r·˙w=q·˙w+˙r·˙wq×˙r·˙w=q·˙r·˙w1˙·˙w=w
11 oveq1 q=Qq˙r=Q˙r
12 11 oveq1d q=Qq˙r·˙w=Q˙r·˙w
13 oveq1 q=Qq·˙w=Q·˙w
14 13 oveq1d q=Qq·˙w+˙r·˙w=Q·˙w+˙r·˙w
15 12 14 eqeq12d q=Qq˙r·˙w=q·˙w+˙r·˙wQ˙r·˙w=Q·˙w+˙r·˙w
16 15 3anbi3d q=Qr·˙wVr·˙w+˙x=r·˙w+˙r·˙xq˙r·˙w=q·˙w+˙r·˙wr·˙wVr·˙w+˙x=r·˙w+˙r·˙xQ˙r·˙w=Q·˙w+˙r·˙w
17 oveq1 q=Qq×˙r=Q×˙r
18 17 oveq1d q=Qq×˙r·˙w=Q×˙r·˙w
19 oveq1 q=Qq·˙r·˙w=Q·˙r·˙w
20 18 19 eqeq12d q=Qq×˙r·˙w=q·˙r·˙wQ×˙r·˙w=Q·˙r·˙w
21 20 anbi1d q=Qq×˙r·˙w=q·˙r·˙w1˙·˙w=wQ×˙r·˙w=Q·˙r·˙w1˙·˙w=w
22 16 21 anbi12d q=Qr·˙wVr·˙w+˙x=r·˙w+˙r·˙xq˙r·˙w=q·˙w+˙r·˙wq×˙r·˙w=q·˙r·˙w1˙·˙w=wr·˙wVr·˙w+˙x=r·˙w+˙r·˙xQ˙r·˙w=Q·˙w+˙r·˙wQ×˙r·˙w=Q·˙r·˙w1˙·˙w=w
23 22 2ralbidv q=QxVwVr·˙wVr·˙w+˙x=r·˙w+˙r·˙xq˙r·˙w=q·˙w+˙r·˙wq×˙r·˙w=q·˙r·˙w1˙·˙w=wxVwVr·˙wVr·˙w+˙x=r·˙w+˙r·˙xQ˙r·˙w=Q·˙w+˙r·˙wQ×˙r·˙w=Q·˙r·˙w1˙·˙w=w
24 oveq1 r=Rr·˙w=R·˙w
25 24 eleq1d r=Rr·˙wVR·˙wV
26 oveq1 r=Rr·˙w+˙x=R·˙w+˙x
27 oveq1 r=Rr·˙x=R·˙x
28 24 27 oveq12d r=Rr·˙w+˙r·˙x=R·˙w+˙R·˙x
29 26 28 eqeq12d r=Rr·˙w+˙x=r·˙w+˙r·˙xR·˙w+˙x=R·˙w+˙R·˙x
30 oveq2 r=RQ˙r=Q˙R
31 30 oveq1d r=RQ˙r·˙w=Q˙R·˙w
32 24 oveq2d r=RQ·˙w+˙r·˙w=Q·˙w+˙R·˙w
33 31 32 eqeq12d r=RQ˙r·˙w=Q·˙w+˙r·˙wQ˙R·˙w=Q·˙w+˙R·˙w
34 25 29 33 3anbi123d r=Rr·˙wVr·˙w+˙x=r·˙w+˙r·˙xQ˙r·˙w=Q·˙w+˙r·˙wR·˙wVR·˙w+˙x=R·˙w+˙R·˙xQ˙R·˙w=Q·˙w+˙R·˙w
35 oveq2 r=RQ×˙r=Q×˙R
36 35 oveq1d r=RQ×˙r·˙w=Q×˙R·˙w
37 24 oveq2d r=RQ·˙r·˙w=Q·˙R·˙w
38 36 37 eqeq12d r=RQ×˙r·˙w=Q·˙r·˙wQ×˙R·˙w=Q·˙R·˙w
39 38 anbi1d r=RQ×˙r·˙w=Q·˙r·˙w1˙·˙w=wQ×˙R·˙w=Q·˙R·˙w1˙·˙w=w
40 34 39 anbi12d r=Rr·˙wVr·˙w+˙x=r·˙w+˙r·˙xQ˙r·˙w=Q·˙w+˙r·˙wQ×˙r·˙w=Q·˙r·˙w1˙·˙w=wR·˙wVR·˙w+˙x=R·˙w+˙R·˙xQ˙R·˙w=Q·˙w+˙R·˙wQ×˙R·˙w=Q·˙R·˙w1˙·˙w=w
41 40 2ralbidv r=RxVwVr·˙wVr·˙w+˙x=r·˙w+˙r·˙xQ˙r·˙w=Q·˙w+˙r·˙wQ×˙r·˙w=Q·˙r·˙w1˙·˙w=wxVwVR·˙wVR·˙w+˙x=R·˙w+˙R·˙xQ˙R·˙w=Q·˙w+˙R·˙wQ×˙R·˙w=Q·˙R·˙w1˙·˙w=w
42 23 41 rspc2v QKRKqKrKxVwVr·˙wVr·˙w+˙x=r·˙w+˙r·˙xq˙r·˙w=q·˙w+˙r·˙wq×˙r·˙w=q·˙r·˙w1˙·˙w=wxVwVR·˙wVR·˙w+˙x=R·˙w+˙R·˙xQ˙R·˙w=Q·˙w+˙R·˙wQ×˙R·˙w=Q·˙R·˙w1˙·˙w=w
43 10 42 mpan9 WLModQKRKxVwVR·˙wVR·˙w+˙x=R·˙w+˙R·˙xQ˙R·˙w=Q·˙w+˙R·˙wQ×˙R·˙w=Q·˙R·˙w1˙·˙w=w
44 oveq2 x=Xw+˙x=w+˙X
45 44 oveq2d x=XR·˙w+˙x=R·˙w+˙X
46 oveq2 x=XR·˙x=R·˙X
47 46 oveq2d x=XR·˙w+˙R·˙x=R·˙w+˙R·˙X
48 45 47 eqeq12d x=XR·˙w+˙x=R·˙w+˙R·˙xR·˙w+˙X=R·˙w+˙R·˙X
49 48 3anbi2d x=XR·˙wVR·˙w+˙x=R·˙w+˙R·˙xQ˙R·˙w=Q·˙w+˙R·˙wR·˙wVR·˙w+˙X=R·˙w+˙R·˙XQ˙R·˙w=Q·˙w+˙R·˙w
50 49 anbi1d x=XR·˙wVR·˙w+˙x=R·˙w+˙R·˙xQ˙R·˙w=Q·˙w+˙R·˙wQ×˙R·˙w=Q·˙R·˙w1˙·˙w=wR·˙wVR·˙w+˙X=R·˙w+˙R·˙XQ˙R·˙w=Q·˙w+˙R·˙wQ×˙R·˙w=Q·˙R·˙w1˙·˙w=w
51 oveq2 w=YR·˙w=R·˙Y
52 51 eleq1d w=YR·˙wVR·˙YV
53 oveq1 w=Yw+˙X=Y+˙X
54 53 oveq2d w=YR·˙w+˙X=R·˙Y+˙X
55 51 oveq1d w=YR·˙w+˙R·˙X=R·˙Y+˙R·˙X
56 54 55 eqeq12d w=YR·˙w+˙X=R·˙w+˙R·˙XR·˙Y+˙X=R·˙Y+˙R·˙X
57 oveq2 w=YQ˙R·˙w=Q˙R·˙Y
58 oveq2 w=YQ·˙w=Q·˙Y
59 58 51 oveq12d w=YQ·˙w+˙R·˙w=Q·˙Y+˙R·˙Y
60 57 59 eqeq12d w=YQ˙R·˙w=Q·˙w+˙R·˙wQ˙R·˙Y=Q·˙Y+˙R·˙Y
61 52 56 60 3anbi123d w=YR·˙wVR·˙w+˙X=R·˙w+˙R·˙XQ˙R·˙w=Q·˙w+˙R·˙wR·˙YVR·˙Y+˙X=R·˙Y+˙R·˙XQ˙R·˙Y=Q·˙Y+˙R·˙Y
62 oveq2 w=YQ×˙R·˙w=Q×˙R·˙Y
63 51 oveq2d w=YQ·˙R·˙w=Q·˙R·˙Y
64 62 63 eqeq12d w=YQ×˙R·˙w=Q·˙R·˙wQ×˙R·˙Y=Q·˙R·˙Y
65 oveq2 w=Y1˙·˙w=1˙·˙Y
66 id w=Yw=Y
67 65 66 eqeq12d w=Y1˙·˙w=w1˙·˙Y=Y
68 64 67 anbi12d w=YQ×˙R·˙w=Q·˙R·˙w1˙·˙w=wQ×˙R·˙Y=Q·˙R·˙Y1˙·˙Y=Y
69 61 68 anbi12d w=YR·˙wVR·˙w+˙X=R·˙w+˙R·˙XQ˙R·˙w=Q·˙w+˙R·˙wQ×˙R·˙w=Q·˙R·˙w1˙·˙w=wR·˙YVR·˙Y+˙X=R·˙Y+˙R·˙XQ˙R·˙Y=Q·˙Y+˙R·˙YQ×˙R·˙Y=Q·˙R·˙Y1˙·˙Y=Y
70 50 69 rspc2v XVYVxVwVR·˙wVR·˙w+˙x=R·˙w+˙R·˙xQ˙R·˙w=Q·˙w+˙R·˙wQ×˙R·˙w=Q·˙R·˙w1˙·˙w=wR·˙YVR·˙Y+˙X=R·˙Y+˙R·˙XQ˙R·˙Y=Q·˙Y+˙R·˙YQ×˙R·˙Y=Q·˙R·˙Y1˙·˙Y=Y
71 43 70 syl5com WLModQKRKXVYVR·˙YVR·˙Y+˙X=R·˙Y+˙R·˙XQ˙R·˙Y=Q·˙Y+˙R·˙YQ×˙R·˙Y=Q·˙R·˙Y1˙·˙Y=Y
72 71 3impia WLModQKRKXVYVR·˙YVR·˙Y+˙X=R·˙Y+˙R·˙XQ˙R·˙Y=Q·˙Y+˙R·˙YQ×˙R·˙Y=Q·˙R·˙Y1˙·˙Y=Y