Description: Lemma for properties of a left module. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | islmod.v | |
|
islmod.a | |
||
islmod.s | |
||
islmod.f | |
||
islmod.k | |
||
islmod.p | |
||
islmod.t | |
||
islmod.u | |
||
Assertion | lmodlema | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islmod.v | |
|
2 | islmod.a | |
|
3 | islmod.s | |
|
4 | islmod.f | |
|
5 | islmod.k | |
|
6 | islmod.p | |
|
7 | islmod.t | |
|
8 | islmod.u | |
|
9 | 1 2 3 4 5 6 7 8 | islmod | |
10 | 9 | simp3bi | |
11 | oveq1 | |
|
12 | 11 | oveq1d | |
13 | oveq1 | |
|
14 | 13 | oveq1d | |
15 | 12 14 | eqeq12d | |
16 | 15 | 3anbi3d | |
17 | oveq1 | |
|
18 | 17 | oveq1d | |
19 | oveq1 | |
|
20 | 18 19 | eqeq12d | |
21 | 20 | anbi1d | |
22 | 16 21 | anbi12d | |
23 | 22 | 2ralbidv | |
24 | oveq1 | |
|
25 | 24 | eleq1d | |
26 | oveq1 | |
|
27 | oveq1 | |
|
28 | 24 27 | oveq12d | |
29 | 26 28 | eqeq12d | |
30 | oveq2 | |
|
31 | 30 | oveq1d | |
32 | 24 | oveq2d | |
33 | 31 32 | eqeq12d | |
34 | 25 29 33 | 3anbi123d | |
35 | oveq2 | |
|
36 | 35 | oveq1d | |
37 | 24 | oveq2d | |
38 | 36 37 | eqeq12d | |
39 | 38 | anbi1d | |
40 | 34 39 | anbi12d | |
41 | 40 | 2ralbidv | |
42 | 23 41 | rspc2v | |
43 | 10 42 | mpan9 | |
44 | oveq2 | |
|
45 | 44 | oveq2d | |
46 | oveq2 | |
|
47 | 46 | oveq2d | |
48 | 45 47 | eqeq12d | |
49 | 48 | 3anbi2d | |
50 | 49 | anbi1d | |
51 | oveq2 | |
|
52 | 51 | eleq1d | |
53 | oveq1 | |
|
54 | 53 | oveq2d | |
55 | 51 | oveq1d | |
56 | 54 55 | eqeq12d | |
57 | oveq2 | |
|
58 | oveq2 | |
|
59 | 58 51 | oveq12d | |
60 | 57 59 | eqeq12d | |
61 | 52 56 60 | 3anbi123d | |
62 | oveq2 | |
|
63 | 51 | oveq2d | |
64 | 62 63 | eqeq12d | |
65 | oveq2 | |
|
66 | id | |
|
67 | 65 66 | eqeq12d | |
68 | 64 67 | anbi12d | |
69 | 61 68 | anbi12d | |
70 | 50 69 | rspc2v | |
71 | 43 70 | syl5com | |
72 | 71 | 3impia | |