Metamath Proof Explorer


Theorem islmodd

Description: Properties that determine a left module. See note in isgrpd2 regarding the ph on hypotheses that name structure components. (Contributed by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses islmodd.v φV=BaseW
islmodd.a φ+˙=+W
islmodd.f φF=ScalarW
islmodd.s φ·˙=W
islmodd.b φB=BaseF
islmodd.p φ˙=+F
islmodd.t φ×˙=F
islmodd.u φ1˙=1F
islmodd.r φFRing
islmodd.l φWGrp
islmodd.w φxByVx·˙yV
islmodd.c φxByVzVx·˙y+˙z=x·˙y+˙x·˙z
islmodd.d φxByBzVx˙y·˙z=x·˙z+˙y·˙z
islmodd.e φxByBzVx×˙y·˙z=x·˙y·˙z
islmodd.g φxV1˙·˙x=x
Assertion islmodd φWLMod

Proof

Step Hyp Ref Expression
1 islmodd.v φV=BaseW
2 islmodd.a φ+˙=+W
3 islmodd.f φF=ScalarW
4 islmodd.s φ·˙=W
5 islmodd.b φB=BaseF
6 islmodd.p φ˙=+F
7 islmodd.t φ×˙=F
8 islmodd.u φ1˙=1F
9 islmodd.r φFRing
10 islmodd.l φWGrp
11 islmodd.w φxByVx·˙yV
12 islmodd.c φxByVzVx·˙y+˙z=x·˙y+˙x·˙z
13 islmodd.d φxByBzVx˙y·˙z=x·˙z+˙y·˙z
14 islmodd.e φxByBzVx×˙y·˙z=x·˙y·˙z
15 islmodd.g φxV1˙·˙x=x
16 3 9 eqeltrrd φScalarWRing
17 11 3expb φxByVx·˙yV
18 17 ralrimivva φxByVx·˙yV
19 oveq1 x=rx·˙y=r·˙y
20 19 eleq1d x=rx·˙yVr·˙yV
21 oveq2 y=wr·˙y=r·˙w
22 21 eleq1d y=wr·˙yVr·˙wV
23 20 22 rspc2v rBwVxByVx·˙yVr·˙wV
24 23 ad2ant2l xBrBuVwVxByVx·˙yVr·˙wV
25 18 24 mpan9 φxBrBuVwVr·˙wV
26 12 ralrimivvva φxByVzVx·˙y+˙z=x·˙y+˙x·˙z
27 oveq1 x=rx·˙y+˙z=r·˙y+˙z
28 oveq1 x=rx·˙z=r·˙z
29 19 28 oveq12d x=rx·˙y+˙x·˙z=r·˙y+˙r·˙z
30 27 29 eqeq12d x=rx·˙y+˙z=x·˙y+˙x·˙zr·˙y+˙z=r·˙y+˙r·˙z
31 oveq1 y=wy+˙z=w+˙z
32 31 oveq2d y=wr·˙y+˙z=r·˙w+˙z
33 21 oveq1d y=wr·˙y+˙r·˙z=r·˙w+˙r·˙z
34 32 33 eqeq12d y=wr·˙y+˙z=r·˙y+˙r·˙zr·˙w+˙z=r·˙w+˙r·˙z
35 oveq2 z=uw+˙z=w+˙u
36 35 oveq2d z=ur·˙w+˙z=r·˙w+˙u
37 oveq2 z=ur·˙z=r·˙u
38 37 oveq2d z=ur·˙w+˙r·˙z=r·˙w+˙r·˙u
39 36 38 eqeq12d z=ur·˙w+˙z=r·˙w+˙r·˙zr·˙w+˙u=r·˙w+˙r·˙u
40 30 34 39 rspc3v rBwVuVxByVzVx·˙y+˙z=x·˙y+˙x·˙zr·˙w+˙u=r·˙w+˙r·˙u
41 40 3com23 rBuVwVxByVzVx·˙y+˙z=x·˙y+˙x·˙zr·˙w+˙u=r·˙w+˙r·˙u
42 41 3expb rBuVwVxByVzVx·˙y+˙z=x·˙y+˙x·˙zr·˙w+˙u=r·˙w+˙r·˙u
43 42 adantll xBrBuVwVxByVzVx·˙y+˙z=x·˙y+˙x·˙zr·˙w+˙u=r·˙w+˙r·˙u
44 26 43 mpan9 φxBrBuVwVr·˙w+˙u=r·˙w+˙r·˙u
45 simpll xBrBuVwVxB
46 13 3exp2 φxByBzVx˙y·˙z=x·˙z+˙y·˙z
47 46 imp43 φxByBzVx˙y·˙z=x·˙z+˙y·˙z
48 47 ralrimivva φxByBzVx˙y·˙z=x·˙z+˙y·˙z
49 45 48 sylan2 φxBrBuVwVyBzVx˙y·˙z=x·˙z+˙y·˙z
50 simprlr φxBrBuVwVrB
51 simprrr φxBrBuVwVwV
52 oveq2 y=rx˙y=x˙r
53 52 oveq1d y=rx˙y·˙z=x˙r·˙z
54 oveq1 y=ry·˙z=r·˙z
55 54 oveq2d y=rx·˙z+˙y·˙z=x·˙z+˙r·˙z
56 53 55 eqeq12d y=rx˙y·˙z=x·˙z+˙y·˙zx˙r·˙z=x·˙z+˙r·˙z
57 oveq2 z=wx˙r·˙z=x˙r·˙w
58 oveq2 z=wx·˙z=x·˙w
59 oveq2 z=wr·˙z=r·˙w
60 58 59 oveq12d z=wx·˙z+˙r·˙z=x·˙w+˙r·˙w
61 57 60 eqeq12d z=wx˙r·˙z=x·˙z+˙r·˙zx˙r·˙w=x·˙w+˙r·˙w
62 56 61 rspc2v rBwVyBzVx˙y·˙z=x·˙z+˙y·˙zx˙r·˙w=x·˙w+˙r·˙w
63 50 51 62 syl2anc φxBrBuVwVyBzVx˙y·˙z=x·˙z+˙y·˙zx˙r·˙w=x·˙w+˙r·˙w
64 49 63 mpd φxBrBuVwVx˙r·˙w=x·˙w+˙r·˙w
65 25 44 64 3jca φxBrBuVwVr·˙wVr·˙w+˙u=r·˙w+˙r·˙ux˙r·˙w=x·˙w+˙r·˙w
66 14 3exp2 φxByBzVx×˙y·˙z=x·˙y·˙z
67 66 imp43 φxByBzVx×˙y·˙z=x·˙y·˙z
68 67 ralrimivva φxByBzVx×˙y·˙z=x·˙y·˙z
69 45 68 sylan2 φxBrBuVwVyBzVx×˙y·˙z=x·˙y·˙z
70 oveq2 y=rx×˙y=x×˙r
71 70 oveq1d y=rx×˙y·˙z=x×˙r·˙z
72 54 oveq2d y=rx·˙y·˙z=x·˙r·˙z
73 71 72 eqeq12d y=rx×˙y·˙z=x·˙y·˙zx×˙r·˙z=x·˙r·˙z
74 oveq2 z=wx×˙r·˙z=x×˙r·˙w
75 59 oveq2d z=wx·˙r·˙z=x·˙r·˙w
76 74 75 eqeq12d z=wx×˙r·˙z=x·˙r·˙zx×˙r·˙w=x·˙r·˙w
77 73 76 rspc2v rBwVyBzVx×˙y·˙z=x·˙y·˙zx×˙r·˙w=x·˙r·˙w
78 50 51 77 syl2anc φxBrBuVwVyBzVx×˙y·˙z=x·˙y·˙zx×˙r·˙w=x·˙r·˙w
79 69 78 mpd φxBrBuVwVx×˙r·˙w=x·˙r·˙w
80 15 ralrimiva φxV1˙·˙x=x
81 oveq2 x=w1˙·˙x=1˙·˙w
82 id x=wx=w
83 81 82 eqeq12d x=w1˙·˙x=x1˙·˙w=w
84 83 rspcv wVxV1˙·˙x=x1˙·˙w=w
85 84 ad2antll xBrBuVwVxV1˙·˙x=x1˙·˙w=w
86 80 85 mpan9 φxBrBuVwV1˙·˙w=w
87 65 79 86 jca32 φxBrBuVwVr·˙wVr·˙w+˙u=r·˙w+˙r·˙ux˙r·˙w=x·˙w+˙r·˙wx×˙r·˙w=x·˙r·˙w1˙·˙w=w
88 87 anassrs φxBrBuVwVr·˙wVr·˙w+˙u=r·˙w+˙r·˙ux˙r·˙w=x·˙w+˙r·˙wx×˙r·˙w=x·˙r·˙w1˙·˙w=w
89 88 ralrimivva φxBrBuVwVr·˙wVr·˙w+˙u=r·˙w+˙r·˙ux˙r·˙w=x·˙w+˙r·˙wx×˙r·˙w=x·˙r·˙w1˙·˙w=w
90 89 ralrimivva φxBrBuVwVr·˙wVr·˙w+˙u=r·˙w+˙r·˙ux˙r·˙w=x·˙w+˙r·˙wx×˙r·˙w=x·˙r·˙w1˙·˙w=w
91 3 fveq2d φBaseF=BaseScalarW
92 5 91 eqtrd φB=BaseScalarW
93 4 oveqd φr·˙w=rWw
94 93 1 eleq12d φr·˙wVrWwBaseW
95 eqidd φr=r
96 2 oveqd φw+˙u=w+Wu
97 4 95 96 oveq123d φr·˙w+˙u=rWw+Wu
98 4 oveqd φr·˙u=rWu
99 2 93 98 oveq123d φr·˙w+˙r·˙u=rWw+WrWu
100 97 99 eqeq12d φr·˙w+˙u=r·˙w+˙r·˙urWw+Wu=rWw+WrWu
101 3 fveq2d φ+F=+ScalarW
102 6 101 eqtrd φ˙=+ScalarW
103 102 oveqd φx˙r=x+ScalarWr
104 eqidd φw=w
105 4 103 104 oveq123d φx˙r·˙w=x+ScalarWrWw
106 4 oveqd φx·˙w=xWw
107 2 106 93 oveq123d φx·˙w+˙r·˙w=xWw+WrWw
108 105 107 eqeq12d φx˙r·˙w=x·˙w+˙r·˙wx+ScalarWrWw=xWw+WrWw
109 94 100 108 3anbi123d φr·˙wVr·˙w+˙u=r·˙w+˙r·˙ux˙r·˙w=x·˙w+˙r·˙wrWwBaseWrWw+Wu=rWw+WrWux+ScalarWrWw=xWw+WrWw
110 3 fveq2d φF=ScalarW
111 7 110 eqtrd φ×˙=ScalarW
112 111 oveqd φx×˙r=xScalarWr
113 4 112 104 oveq123d φx×˙r·˙w=xScalarWrWw
114 eqidd φx=x
115 4 114 93 oveq123d φx·˙r·˙w=xWrWw
116 113 115 eqeq12d φx×˙r·˙w=x·˙r·˙wxScalarWrWw=xWrWw
117 3 fveq2d φ1F=1ScalarW
118 8 117 eqtrd φ1˙=1ScalarW
119 4 118 104 oveq123d φ1˙·˙w=1ScalarWWw
120 119 eqeq1d φ1˙·˙w=w1ScalarWWw=w
121 116 120 anbi12d φx×˙r·˙w=x·˙r·˙w1˙·˙w=wxScalarWrWw=xWrWw1ScalarWWw=w
122 109 121 anbi12d φr·˙wVr·˙w+˙u=r·˙w+˙r·˙ux˙r·˙w=x·˙w+˙r·˙wx×˙r·˙w=x·˙r·˙w1˙·˙w=wrWwBaseWrWw+Wu=rWw+WrWux+ScalarWrWw=xWw+WrWwxScalarWrWw=xWrWw1ScalarWWw=w
123 1 122 raleqbidv φwVr·˙wVr·˙w+˙u=r·˙w+˙r·˙ux˙r·˙w=x·˙w+˙r·˙wx×˙r·˙w=x·˙r·˙w1˙·˙w=wwBaseWrWwBaseWrWw+Wu=rWw+WrWux+ScalarWrWw=xWw+WrWwxScalarWrWw=xWrWw1ScalarWWw=w
124 1 123 raleqbidv φuVwVr·˙wVr·˙w+˙u=r·˙w+˙r·˙ux˙r·˙w=x·˙w+˙r·˙wx×˙r·˙w=x·˙r·˙w1˙·˙w=wuBaseWwBaseWrWwBaseWrWw+Wu=rWw+WrWux+ScalarWrWw=xWw+WrWwxScalarWrWw=xWrWw1ScalarWWw=w
125 92 124 raleqbidv φrBuVwVr·˙wVr·˙w+˙u=r·˙w+˙r·˙ux˙r·˙w=x·˙w+˙r·˙wx×˙r·˙w=x·˙r·˙w1˙·˙w=wrBaseScalarWuBaseWwBaseWrWwBaseWrWw+Wu=rWw+WrWux+ScalarWrWw=xWw+WrWwxScalarWrWw=xWrWw1ScalarWWw=w
126 92 125 raleqbidv φxBrBuVwVr·˙wVr·˙w+˙u=r·˙w+˙r·˙ux˙r·˙w=x·˙w+˙r·˙wx×˙r·˙w=x·˙r·˙w1˙·˙w=wxBaseScalarWrBaseScalarWuBaseWwBaseWrWwBaseWrWw+Wu=rWw+WrWux+ScalarWrWw=xWw+WrWwxScalarWrWw=xWrWw1ScalarWWw=w
127 90 126 mpbid φxBaseScalarWrBaseScalarWuBaseWwBaseWrWwBaseWrWw+Wu=rWw+WrWux+ScalarWrWw=xWw+WrWwxScalarWrWw=xWrWw1ScalarWWw=w
128 eqid BaseW=BaseW
129 eqid +W=+W
130 eqid W=W
131 eqid ScalarW=ScalarW
132 eqid BaseScalarW=BaseScalarW
133 eqid +ScalarW=+ScalarW
134 eqid ScalarW=ScalarW
135 eqid 1ScalarW=1ScalarW
136 128 129 130 131 132 133 134 135 islmod WLModWGrpScalarWRingxBaseScalarWrBaseScalarWuBaseWwBaseWrWwBaseWrWw+Wu=rWw+WrWux+ScalarWrWw=xWw+WrWwxScalarWrWw=xWrWw1ScalarWWw=w
137 10 16 127 136 syl3anbrc φWLMod