| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcomf.f |
|- F = ( Scalar ` W ) |
| 2 |
|
lcomf.k |
|- K = ( Base ` F ) |
| 3 |
|
lcomf.s |
|- .x. = ( .s ` W ) |
| 4 |
|
lcomf.b |
|- B = ( Base ` W ) |
| 5 |
|
lcomf.w |
|- ( ph -> W e. LMod ) |
| 6 |
|
lcomf.g |
|- ( ph -> G : I --> K ) |
| 7 |
|
lcomf.h |
|- ( ph -> H : I --> B ) |
| 8 |
|
lcomf.i |
|- ( ph -> I e. V ) |
| 9 |
|
lcomfsupp.z |
|- .0. = ( 0g ` W ) |
| 10 |
|
lcomfsupp.y |
|- Y = ( 0g ` F ) |
| 11 |
|
lcomfsupp.j |
|- ( ph -> G finSupp Y ) |
| 12 |
11
|
fsuppimpd |
|- ( ph -> ( G supp Y ) e. Fin ) |
| 13 |
1 2 3 4 5 6 7 8
|
lcomf |
|- ( ph -> ( G oF .x. H ) : I --> B ) |
| 14 |
|
eldifi |
|- ( x e. ( I \ ( G supp Y ) ) -> x e. I ) |
| 15 |
6
|
ffnd |
|- ( ph -> G Fn I ) |
| 16 |
15
|
adantr |
|- ( ( ph /\ x e. I ) -> G Fn I ) |
| 17 |
7
|
ffnd |
|- ( ph -> H Fn I ) |
| 18 |
17
|
adantr |
|- ( ( ph /\ x e. I ) -> H Fn I ) |
| 19 |
8
|
adantr |
|- ( ( ph /\ x e. I ) -> I e. V ) |
| 20 |
|
simpr |
|- ( ( ph /\ x e. I ) -> x e. I ) |
| 21 |
|
fnfvof |
|- ( ( ( G Fn I /\ H Fn I ) /\ ( I e. V /\ x e. I ) ) -> ( ( G oF .x. H ) ` x ) = ( ( G ` x ) .x. ( H ` x ) ) ) |
| 22 |
16 18 19 20 21
|
syl22anc |
|- ( ( ph /\ x e. I ) -> ( ( G oF .x. H ) ` x ) = ( ( G ` x ) .x. ( H ` x ) ) ) |
| 23 |
14 22
|
sylan2 |
|- ( ( ph /\ x e. ( I \ ( G supp Y ) ) ) -> ( ( G oF .x. H ) ` x ) = ( ( G ` x ) .x. ( H ` x ) ) ) |
| 24 |
|
ssidd |
|- ( ph -> ( G supp Y ) C_ ( G supp Y ) ) |
| 25 |
10
|
fvexi |
|- Y e. _V |
| 26 |
25
|
a1i |
|- ( ph -> Y e. _V ) |
| 27 |
6 24 8 26
|
suppssr |
|- ( ( ph /\ x e. ( I \ ( G supp Y ) ) ) -> ( G ` x ) = Y ) |
| 28 |
27
|
oveq1d |
|- ( ( ph /\ x e. ( I \ ( G supp Y ) ) ) -> ( ( G ` x ) .x. ( H ` x ) ) = ( Y .x. ( H ` x ) ) ) |
| 29 |
7
|
ffvelcdmda |
|- ( ( ph /\ x e. I ) -> ( H ` x ) e. B ) |
| 30 |
4 1 3 10 9
|
lmod0vs |
|- ( ( W e. LMod /\ ( H ` x ) e. B ) -> ( Y .x. ( H ` x ) ) = .0. ) |
| 31 |
5 29 30
|
syl2an2r |
|- ( ( ph /\ x e. I ) -> ( Y .x. ( H ` x ) ) = .0. ) |
| 32 |
14 31
|
sylan2 |
|- ( ( ph /\ x e. ( I \ ( G supp Y ) ) ) -> ( Y .x. ( H ` x ) ) = .0. ) |
| 33 |
23 28 32
|
3eqtrd |
|- ( ( ph /\ x e. ( I \ ( G supp Y ) ) ) -> ( ( G oF .x. H ) ` x ) = .0. ) |
| 34 |
13 33
|
suppss |
|- ( ph -> ( ( G oF .x. H ) supp .0. ) C_ ( G supp Y ) ) |
| 35 |
12 34
|
ssfid |
|- ( ph -> ( ( G oF .x. H ) supp .0. ) e. Fin ) |
| 36 |
15 17 8 8
|
offun |
|- ( ph -> Fun ( G oF .x. H ) ) |
| 37 |
|
ovexd |
|- ( ph -> ( G oF .x. H ) e. _V ) |
| 38 |
9
|
fvexi |
|- .0. e. _V |
| 39 |
38
|
a1i |
|- ( ph -> .0. e. _V ) |
| 40 |
|
funisfsupp |
|- ( ( Fun ( G oF .x. H ) /\ ( G oF .x. H ) e. _V /\ .0. e. _V ) -> ( ( G oF .x. H ) finSupp .0. <-> ( ( G oF .x. H ) supp .0. ) e. Fin ) ) |
| 41 |
36 37 39 40
|
syl3anc |
|- ( ph -> ( ( G oF .x. H ) finSupp .0. <-> ( ( G oF .x. H ) supp .0. ) e. Fin ) ) |
| 42 |
35 41
|
mpbird |
|- ( ph -> ( G oF .x. H ) finSupp .0. ) |