Metamath Proof Explorer


Theorem lcomfsupp

Description: A linear-combination sum is finitely supported if the coefficients are. (Contributed by Stefan O'Rear, 28-Feb-2015) (Revised by AV, 15-Jul-2019)

Ref Expression
Hypotheses lcomf.f F=ScalarW
lcomf.k K=BaseF
lcomf.s ·˙=W
lcomf.b B=BaseW
lcomf.w φWLMod
lcomf.g φG:IK
lcomf.h φH:IB
lcomf.i φIV
lcomfsupp.z 0˙=0W
lcomfsupp.y Y=0F
lcomfsupp.j φfinSuppYG
Assertion lcomfsupp φfinSupp0˙G·˙fH

Proof

Step Hyp Ref Expression
1 lcomf.f F=ScalarW
2 lcomf.k K=BaseF
3 lcomf.s ·˙=W
4 lcomf.b B=BaseW
5 lcomf.w φWLMod
6 lcomf.g φG:IK
7 lcomf.h φH:IB
8 lcomf.i φIV
9 lcomfsupp.z 0˙=0W
10 lcomfsupp.y Y=0F
11 lcomfsupp.j φfinSuppYG
12 11 fsuppimpd φGsuppYFin
13 1 2 3 4 5 6 7 8 lcomf φG·˙fH:IB
14 eldifi xIsuppYGxI
15 6 ffnd φGFnI
16 15 adantr φxIGFnI
17 7 ffnd φHFnI
18 17 adantr φxIHFnI
19 8 adantr φxIIV
20 simpr φxIxI
21 fnfvof GFnIHFnIIVxIG·˙fHx=Gx·˙Hx
22 16 18 19 20 21 syl22anc φxIG·˙fHx=Gx·˙Hx
23 14 22 sylan2 φxIsuppYGG·˙fHx=Gx·˙Hx
24 ssidd φGsuppYGsuppY
25 10 fvexi YV
26 25 a1i φYV
27 6 24 8 26 suppssr φxIsuppYGGx=Y
28 27 oveq1d φxIsuppYGGx·˙Hx=Y·˙Hx
29 7 ffvelcdmda φxIHxB
30 4 1 3 10 9 lmod0vs WLModHxBY·˙Hx=0˙
31 5 29 30 syl2an2r φxIY·˙Hx=0˙
32 14 31 sylan2 φxIsuppYGY·˙Hx=0˙
33 23 28 32 3eqtrd φxIsuppYGG·˙fHx=0˙
34 13 33 suppss φG·˙fHsupp0˙GsuppY
35 12 34 ssfid φG·˙fHsupp0˙Fin
36 15 17 8 8 offun φFunG·˙fH
37 ovexd φG·˙fHV
38 9 fvexi 0˙V
39 38 a1i φ0˙V
40 funisfsupp FunG·˙fHG·˙fHV0˙VfinSupp0˙G·˙fHG·˙fHsupp0˙Fin
41 36 37 39 40 syl3anc φfinSupp0˙G·˙fHG·˙fHsupp0˙Fin
42 35 41 mpbird φfinSupp0˙G·˙fH