| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcomf.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 2 |
|
lcomf.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 3 |
|
lcomf.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 4 |
|
lcomf.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
| 5 |
|
lcomf.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 6 |
|
lcomf.g |
⊢ ( 𝜑 → 𝐺 : 𝐼 ⟶ 𝐾 ) |
| 7 |
|
lcomf.h |
⊢ ( 𝜑 → 𝐻 : 𝐼 ⟶ 𝐵 ) |
| 8 |
|
lcomf.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 9 |
|
lcomfsupp.z |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 10 |
|
lcomfsupp.y |
⊢ 𝑌 = ( 0g ‘ 𝐹 ) |
| 11 |
|
lcomfsupp.j |
⊢ ( 𝜑 → 𝐺 finSupp 𝑌 ) |
| 12 |
11
|
fsuppimpd |
⊢ ( 𝜑 → ( 𝐺 supp 𝑌 ) ∈ Fin ) |
| 13 |
1 2 3 4 5 6 7 8
|
lcomf |
⊢ ( 𝜑 → ( 𝐺 ∘f · 𝐻 ) : 𝐼 ⟶ 𝐵 ) |
| 14 |
|
eldifi |
⊢ ( 𝑥 ∈ ( 𝐼 ∖ ( 𝐺 supp 𝑌 ) ) → 𝑥 ∈ 𝐼 ) |
| 15 |
6
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn 𝐼 ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐺 Fn 𝐼 ) |
| 17 |
7
|
ffnd |
⊢ ( 𝜑 → 𝐻 Fn 𝐼 ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐻 Fn 𝐼 ) |
| 19 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐼 ∈ 𝑉 ) |
| 20 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ 𝐼 ) |
| 21 |
|
fnfvof |
⊢ ( ( ( 𝐺 Fn 𝐼 ∧ 𝐻 Fn 𝐼 ) ∧ ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼 ) ) → ( ( 𝐺 ∘f · 𝐻 ) ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) · ( 𝐻 ‘ 𝑥 ) ) ) |
| 22 |
16 18 19 20 21
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐺 ∘f · 𝐻 ) ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) · ( 𝐻 ‘ 𝑥 ) ) ) |
| 23 |
14 22
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ ( 𝐺 supp 𝑌 ) ) ) → ( ( 𝐺 ∘f · 𝐻 ) ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) · ( 𝐻 ‘ 𝑥 ) ) ) |
| 24 |
|
ssidd |
⊢ ( 𝜑 → ( 𝐺 supp 𝑌 ) ⊆ ( 𝐺 supp 𝑌 ) ) |
| 25 |
10
|
fvexi |
⊢ 𝑌 ∈ V |
| 26 |
25
|
a1i |
⊢ ( 𝜑 → 𝑌 ∈ V ) |
| 27 |
6 24 8 26
|
suppssr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ ( 𝐺 supp 𝑌 ) ) ) → ( 𝐺 ‘ 𝑥 ) = 𝑌 ) |
| 28 |
27
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ ( 𝐺 supp 𝑌 ) ) ) → ( ( 𝐺 ‘ 𝑥 ) · ( 𝐻 ‘ 𝑥 ) ) = ( 𝑌 · ( 𝐻 ‘ 𝑥 ) ) ) |
| 29 |
7
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐻 ‘ 𝑥 ) ∈ 𝐵 ) |
| 30 |
4 1 3 10 9
|
lmod0vs |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐻 ‘ 𝑥 ) ∈ 𝐵 ) → ( 𝑌 · ( 𝐻 ‘ 𝑥 ) ) = 0 ) |
| 31 |
5 29 30
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑌 · ( 𝐻 ‘ 𝑥 ) ) = 0 ) |
| 32 |
14 31
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ ( 𝐺 supp 𝑌 ) ) ) → ( 𝑌 · ( 𝐻 ‘ 𝑥 ) ) = 0 ) |
| 33 |
23 28 32
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ ( 𝐺 supp 𝑌 ) ) ) → ( ( 𝐺 ∘f · 𝐻 ) ‘ 𝑥 ) = 0 ) |
| 34 |
13 33
|
suppss |
⊢ ( 𝜑 → ( ( 𝐺 ∘f · 𝐻 ) supp 0 ) ⊆ ( 𝐺 supp 𝑌 ) ) |
| 35 |
12 34
|
ssfid |
⊢ ( 𝜑 → ( ( 𝐺 ∘f · 𝐻 ) supp 0 ) ∈ Fin ) |
| 36 |
15 17 8 8
|
offun |
⊢ ( 𝜑 → Fun ( 𝐺 ∘f · 𝐻 ) ) |
| 37 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐺 ∘f · 𝐻 ) ∈ V ) |
| 38 |
9
|
fvexi |
⊢ 0 ∈ V |
| 39 |
38
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
| 40 |
|
funisfsupp |
⊢ ( ( Fun ( 𝐺 ∘f · 𝐻 ) ∧ ( 𝐺 ∘f · 𝐻 ) ∈ V ∧ 0 ∈ V ) → ( ( 𝐺 ∘f · 𝐻 ) finSupp 0 ↔ ( ( 𝐺 ∘f · 𝐻 ) supp 0 ) ∈ Fin ) ) |
| 41 |
36 37 39 40
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐺 ∘f · 𝐻 ) finSupp 0 ↔ ( ( 𝐺 ∘f · 𝐻 ) supp 0 ) ∈ Fin ) ) |
| 42 |
35 41
|
mpbird |
⊢ ( 𝜑 → ( 𝐺 ∘f · 𝐻 ) finSupp 0 ) |