Metamath Proof Explorer


Theorem eldifi

Description: Implication of membership in a class difference. (Contributed by NM, 29-Apr-1994)

Ref Expression
Assertion eldifi ( 𝐴 ∈ ( 𝐵𝐶 ) → 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 eldif ( 𝐴 ∈ ( 𝐵𝐶 ) ↔ ( 𝐴𝐵 ∧ ¬ 𝐴𝐶 ) )
2 1 simplbi ( 𝐴 ∈ ( 𝐵𝐶 ) → 𝐴𝐵 )