Metamath Proof Explorer


Theorem fnfvof

Description: Function value of a pointwise composition. (Contributed by Stefan O'Rear, 5-Oct-2014) (Proof shortened by Mario Carneiro, 5-Jun-2015)

Ref Expression
Assertion fnfvof ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ ( 𝐴𝑉𝑋𝐴 ) ) → ( ( 𝐹f 𝑅 𝐺 ) ‘ 𝑋 ) = ( ( 𝐹𝑋 ) 𝑅 ( 𝐺𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 simpll ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ 𝐴𝑉 ) → 𝐹 Fn 𝐴 )
2 simplr ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ 𝐴𝑉 ) → 𝐺 Fn 𝐴 )
3 simpr ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ 𝐴𝑉 ) → 𝐴𝑉 )
4 inidm ( 𝐴𝐴 ) = 𝐴
5 eqidd ( ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ 𝐴𝑉 ) ∧ 𝑋𝐴 ) → ( 𝐹𝑋 ) = ( 𝐹𝑋 ) )
6 eqidd ( ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ 𝐴𝑉 ) ∧ 𝑋𝐴 ) → ( 𝐺𝑋 ) = ( 𝐺𝑋 ) )
7 1 2 3 3 4 5 6 ofval ( ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ 𝐴𝑉 ) ∧ 𝑋𝐴 ) → ( ( 𝐹f 𝑅 𝐺 ) ‘ 𝑋 ) = ( ( 𝐹𝑋 ) 𝑅 ( 𝐺𝑋 ) ) )
8 7 anasss ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ ( 𝐴𝑉𝑋𝐴 ) ) → ( ( 𝐹f 𝑅 𝐺 ) ‘ 𝑋 ) = ( ( 𝐹𝑋 ) 𝑅 ( 𝐺𝑋 ) ) )