Step |
Hyp |
Ref |
Expression |
1 |
|
off.1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇 ) ) → ( 𝑥 𝑅 𝑦 ) ∈ 𝑈 ) |
2 |
|
off.2 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) |
3 |
|
off.3 |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝑇 ) |
4 |
|
off.4 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
5 |
|
off.5 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
6 |
|
off.6 |
⊢ ( 𝐴 ∩ 𝐵 ) = 𝐶 |
7 |
2
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
8 |
3
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn 𝐵 ) |
9 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
10 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) |
11 |
7 8 4 5 6 9 10
|
offval |
⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑧 ∈ 𝐶 ↦ ( ( 𝐹 ‘ 𝑧 ) 𝑅 ( 𝐺 ‘ 𝑧 ) ) ) ) |
12 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 |
13 |
6 12
|
eqsstrri |
⊢ 𝐶 ⊆ 𝐴 |
14 |
13
|
sseli |
⊢ ( 𝑧 ∈ 𝐶 → 𝑧 ∈ 𝐴 ) |
15 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝑆 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑆 ) |
16 |
2 14 15
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑆 ) |
17 |
|
inss2 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 |
18 |
6 17
|
eqsstrri |
⊢ 𝐶 ⊆ 𝐵 |
19 |
18
|
sseli |
⊢ ( 𝑧 ∈ 𝐶 → 𝑧 ∈ 𝐵 ) |
20 |
|
ffvelrn |
⊢ ( ( 𝐺 : 𝐵 ⟶ 𝑇 ∧ 𝑧 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝑇 ) |
21 |
3 19 20
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝑇 ) |
22 |
1
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑇 ( 𝑥 𝑅 𝑦 ) ∈ 𝑈 ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑇 ( 𝑥 𝑅 𝑦 ) ∈ 𝑈 ) |
24 |
|
ovrspc2v |
⊢ ( ( ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑆 ∧ ( 𝐺 ‘ 𝑧 ) ∈ 𝑇 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑇 ( 𝑥 𝑅 𝑦 ) ∈ 𝑈 ) → ( ( 𝐹 ‘ 𝑧 ) 𝑅 ( 𝐺 ‘ 𝑧 ) ) ∈ 𝑈 ) |
25 |
16 21 23 24
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → ( ( 𝐹 ‘ 𝑧 ) 𝑅 ( 𝐺 ‘ 𝑧 ) ) ∈ 𝑈 ) |
26 |
11 25
|
fmpt3d |
⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) : 𝐶 ⟶ 𝑈 ) |