Metamath Proof Explorer


Theorem off

Description: The function operation produces a function. (Contributed by Mario Carneiro, 20-Jul-2014)

Ref Expression
Hypotheses off.1 φxSyTxRyU
off.2 φF:AS
off.3 φG:BT
off.4 φAV
off.5 φBW
off.6 AB=C
Assertion off φFRfG:CU

Proof

Step Hyp Ref Expression
1 off.1 φxSyTxRyU
2 off.2 φF:AS
3 off.3 φG:BT
4 off.4 φAV
5 off.5 φBW
6 off.6 AB=C
7 2 ffnd φFFnA
8 3 ffnd φGFnB
9 eqidd φzAFz=Fz
10 eqidd φzBGz=Gz
11 7 8 4 5 6 9 10 offval φFRfG=zCFzRGz
12 inss1 ABA
13 6 12 eqsstrri CA
14 13 sseli zCzA
15 ffvelcdm F:ASzAFzS
16 2 14 15 syl2an φzCFzS
17 inss2 ABB
18 6 17 eqsstrri CB
19 18 sseli zCzB
20 ffvelcdm G:BTzBGzT
21 3 19 20 syl2an φzCGzT
22 1 ralrimivva φxSyTxRyU
23 22 adantr φzCxSyTxRyU
24 ovrspc2v FzSGzTxSyTxRyUFzRGzU
25 16 21 23 24 syl21anc φzCFzRGzU
26 11 25 fmpt3d φFRfG:CU