Metamath Proof Explorer


Theorem off

Description: The function operation produces a function. (Contributed by Mario Carneiro, 20-Jul-2014)

Ref Expression
Hypotheses off.1 φ x S y T x R y U
off.2 φ F : A S
off.3 φ G : B T
off.4 φ A V
off.5 φ B W
off.6 A B = C
Assertion off φ F R f G : C U

Proof

Step Hyp Ref Expression
1 off.1 φ x S y T x R y U
2 off.2 φ F : A S
3 off.3 φ G : B T
4 off.4 φ A V
5 off.5 φ B W
6 off.6 A B = C
7 2 ffnd φ F Fn A
8 3 ffnd φ G Fn B
9 eqidd φ z A F z = F z
10 eqidd φ z B G z = G z
11 7 8 4 5 6 9 10 offval φ F R f G = z C F z R G z
12 inss1 A B A
13 6 12 eqsstrri C A
14 13 sseli z C z A
15 ffvelrn F : A S z A F z S
16 2 14 15 syl2an φ z C F z S
17 inss2 A B B
18 6 17 eqsstrri C B
19 18 sseli z C z B
20 ffvelrn G : B T z B G z T
21 3 19 20 syl2an φ z C G z T
22 1 ralrimivva φ x S y T x R y U
23 22 adantr φ z C x S y T x R y U
24 ovrspc2v F z S G z T x S y T x R y U F z R G z U
25 16 21 23 24 syl21anc φ z C F z R G z U
26 11 25 fmpt3d φ F R f G : C U