Metamath Proof Explorer


Theorem ofres

Description: Restrict the operands of a function operation to the same domain as that of the operation itself. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Hypotheses ofres.1 φ F Fn A
ofres.2 φ G Fn B
ofres.3 φ A V
ofres.4 φ B W
ofres.5 A B = C
Assertion ofres φ F R f G = F C R f G C

Proof

Step Hyp Ref Expression
1 ofres.1 φ F Fn A
2 ofres.2 φ G Fn B
3 ofres.3 φ A V
4 ofres.4 φ B W
5 ofres.5 A B = C
6 eqidd φ x A F x = F x
7 eqidd φ x B G x = G x
8 1 2 3 4 5 6 7 offval φ F R f G = x C F x R G x
9 inss1 A B A
10 5 9 eqsstrri C A
11 fnssres F Fn A C A F C Fn C
12 1 10 11 sylancl φ F C Fn C
13 inss2 A B B
14 5 13 eqsstrri C B
15 fnssres G Fn B C B G C Fn C
16 2 14 15 sylancl φ G C Fn C
17 ssexg C A A V C V
18 10 3 17 sylancr φ C V
19 inidm C C = C
20 fvres x C F C x = F x
21 20 adantl φ x C F C x = F x
22 fvres x C G C x = G x
23 22 adantl φ x C G C x = G x
24 12 16 18 18 19 21 23 offval φ F C R f G C = x C F x R G x
25 8 24 eqtr4d φ F R f G = F C R f G C