Step |
Hyp |
Ref |
Expression |
1 |
|
ofres.1 |
|- ( ph -> F Fn A ) |
2 |
|
ofres.2 |
|- ( ph -> G Fn B ) |
3 |
|
ofres.3 |
|- ( ph -> A e. V ) |
4 |
|
ofres.4 |
|- ( ph -> B e. W ) |
5 |
|
ofres.5 |
|- ( A i^i B ) = C |
6 |
|
eqidd |
|- ( ( ph /\ x e. A ) -> ( F ` x ) = ( F ` x ) ) |
7 |
|
eqidd |
|- ( ( ph /\ x e. B ) -> ( G ` x ) = ( G ` x ) ) |
8 |
1 2 3 4 5 6 7
|
offval |
|- ( ph -> ( F oF R G ) = ( x e. C |-> ( ( F ` x ) R ( G ` x ) ) ) ) |
9 |
|
inss1 |
|- ( A i^i B ) C_ A |
10 |
5 9
|
eqsstrri |
|- C C_ A |
11 |
|
fnssres |
|- ( ( F Fn A /\ C C_ A ) -> ( F |` C ) Fn C ) |
12 |
1 10 11
|
sylancl |
|- ( ph -> ( F |` C ) Fn C ) |
13 |
|
inss2 |
|- ( A i^i B ) C_ B |
14 |
5 13
|
eqsstrri |
|- C C_ B |
15 |
|
fnssres |
|- ( ( G Fn B /\ C C_ B ) -> ( G |` C ) Fn C ) |
16 |
2 14 15
|
sylancl |
|- ( ph -> ( G |` C ) Fn C ) |
17 |
|
ssexg |
|- ( ( C C_ A /\ A e. V ) -> C e. _V ) |
18 |
10 3 17
|
sylancr |
|- ( ph -> C e. _V ) |
19 |
|
inidm |
|- ( C i^i C ) = C |
20 |
|
fvres |
|- ( x e. C -> ( ( F |` C ) ` x ) = ( F ` x ) ) |
21 |
20
|
adantl |
|- ( ( ph /\ x e. C ) -> ( ( F |` C ) ` x ) = ( F ` x ) ) |
22 |
|
fvres |
|- ( x e. C -> ( ( G |` C ) ` x ) = ( G ` x ) ) |
23 |
22
|
adantl |
|- ( ( ph /\ x e. C ) -> ( ( G |` C ) ` x ) = ( G ` x ) ) |
24 |
12 16 18 18 19 21 23
|
offval |
|- ( ph -> ( ( F |` C ) oF R ( G |` C ) ) = ( x e. C |-> ( ( F ` x ) R ( G ` x ) ) ) ) |
25 |
8 24
|
eqtr4d |
|- ( ph -> ( F oF R G ) = ( ( F |` C ) oF R ( G |` C ) ) ) |