| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ofres.1 | ⊢ ( 𝜑  →  𝐹  Fn  𝐴 ) | 
						
							| 2 |  | ofres.2 | ⊢ ( 𝜑  →  𝐺  Fn  𝐵 ) | 
						
							| 3 |  | ofres.3 | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 4 |  | ofres.4 | ⊢ ( 𝜑  →  𝐵  ∈  𝑊 ) | 
						
							| 5 |  | ofres.5 | ⊢ ( 𝐴  ∩  𝐵 )  =  𝐶 | 
						
							| 6 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 7 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 8 | 1 2 3 4 5 6 7 | offval | ⊢ ( 𝜑  →  ( 𝐹  ∘f  𝑅 𝐺 )  =  ( 𝑥  ∈  𝐶  ↦  ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 9 |  | inss1 | ⊢ ( 𝐴  ∩  𝐵 )  ⊆  𝐴 | 
						
							| 10 | 5 9 | eqsstrri | ⊢ 𝐶  ⊆  𝐴 | 
						
							| 11 |  | fnssres | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐶  ⊆  𝐴 )  →  ( 𝐹  ↾  𝐶 )  Fn  𝐶 ) | 
						
							| 12 | 1 10 11 | sylancl | ⊢ ( 𝜑  →  ( 𝐹  ↾  𝐶 )  Fn  𝐶 ) | 
						
							| 13 |  | inss2 | ⊢ ( 𝐴  ∩  𝐵 )  ⊆  𝐵 | 
						
							| 14 | 5 13 | eqsstrri | ⊢ 𝐶  ⊆  𝐵 | 
						
							| 15 |  | fnssres | ⊢ ( ( 𝐺  Fn  𝐵  ∧  𝐶  ⊆  𝐵 )  →  ( 𝐺  ↾  𝐶 )  Fn  𝐶 ) | 
						
							| 16 | 2 14 15 | sylancl | ⊢ ( 𝜑  →  ( 𝐺  ↾  𝐶 )  Fn  𝐶 ) | 
						
							| 17 |  | ssexg | ⊢ ( ( 𝐶  ⊆  𝐴  ∧  𝐴  ∈  𝑉 )  →  𝐶  ∈  V ) | 
						
							| 18 | 10 3 17 | sylancr | ⊢ ( 𝜑  →  𝐶  ∈  V ) | 
						
							| 19 |  | inidm | ⊢ ( 𝐶  ∩  𝐶 )  =  𝐶 | 
						
							| 20 |  | fvres | ⊢ ( 𝑥  ∈  𝐶  →  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  ( ( 𝐹  ↾  𝐶 ) ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 22 |  | fvres | ⊢ ( 𝑥  ∈  𝐶  →  ( ( 𝐺  ↾  𝐶 ) ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  ( ( 𝐺  ↾  𝐶 ) ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 24 | 12 16 18 18 19 21 23 | offval | ⊢ ( 𝜑  →  ( ( 𝐹  ↾  𝐶 )  ∘f  𝑅 ( 𝐺  ↾  𝐶 ) )  =  ( 𝑥  ∈  𝐶  ↦  ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 25 | 8 24 | eqtr4d | ⊢ ( 𝜑  →  ( 𝐹  ∘f  𝑅 𝐺 )  =  ( ( 𝐹  ↾  𝐶 )  ∘f  𝑅 ( 𝐺  ↾  𝐶 ) ) ) |