Step |
Hyp |
Ref |
Expression |
1 |
|
ofres.1 |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
2 |
|
ofres.2 |
⊢ ( 𝜑 → 𝐺 Fn 𝐵 ) |
3 |
|
ofres.3 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
4 |
|
ofres.4 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
5 |
|
ofres.5 |
⊢ ( 𝐴 ∩ 𝐵 ) = 𝐶 |
6 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
7 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
8 |
1 2 3 4 5 6 7
|
offval |
⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑥 ∈ 𝐶 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) |
9 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 |
10 |
5 9
|
eqsstrri |
⊢ 𝐶 ⊆ 𝐴 |
11 |
|
fnssres |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝐶 ) Fn 𝐶 ) |
12 |
1 10 11
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) Fn 𝐶 ) |
13 |
|
inss2 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 |
14 |
5 13
|
eqsstrri |
⊢ 𝐶 ⊆ 𝐵 |
15 |
|
fnssres |
⊢ ( ( 𝐺 Fn 𝐵 ∧ 𝐶 ⊆ 𝐵 ) → ( 𝐺 ↾ 𝐶 ) Fn 𝐶 ) |
16 |
2 14 15
|
sylancl |
⊢ ( 𝜑 → ( 𝐺 ↾ 𝐶 ) Fn 𝐶 ) |
17 |
|
ssexg |
⊢ ( ( 𝐶 ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉 ) → 𝐶 ∈ V ) |
18 |
10 3 17
|
sylancr |
⊢ ( 𝜑 → 𝐶 ∈ V ) |
19 |
|
inidm |
⊢ ( 𝐶 ∩ 𝐶 ) = 𝐶 |
20 |
|
fvres |
⊢ ( 𝑥 ∈ 𝐶 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
22 |
|
fvres |
⊢ ( 𝑥 ∈ 𝐶 → ( ( 𝐺 ↾ 𝐶 ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
23 |
22
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝐺 ↾ 𝐶 ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
24 |
12 16 18 18 19 21 23
|
offval |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐶 ) ∘f 𝑅 ( 𝐺 ↾ 𝐶 ) ) = ( 𝑥 ∈ 𝐶 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) |
25 |
8 24
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) = ( ( 𝐹 ↾ 𝐶 ) ∘f 𝑅 ( 𝐺 ↾ 𝐶 ) ) ) |