Metamath Proof Explorer


Theorem lmod0cl

Description: The ring zero in a left module belongs to the ring base set. (Contributed by NM, 11-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmod0cl.f 𝐹 = ( Scalar ‘ 𝑊 )
lmod0cl.k 𝐾 = ( Base ‘ 𝐹 )
lmod0cl.z 0 = ( 0g𝐹 )
Assertion lmod0cl ( 𝑊 ∈ LMod → 0𝐾 )

Proof

Step Hyp Ref Expression
1 lmod0cl.f 𝐹 = ( Scalar ‘ 𝑊 )
2 lmod0cl.k 𝐾 = ( Base ‘ 𝐹 )
3 lmod0cl.z 0 = ( 0g𝐹 )
4 1 lmodring ( 𝑊 ∈ LMod → 𝐹 ∈ Ring )
5 2 3 ring0cl ( 𝐹 ∈ Ring → 0𝐾 )
6 4 5 syl ( 𝑊 ∈ LMod → 0𝐾 )