Metamath Proof Explorer
Description: The ring zero in a left module belongs to the ring base set.
(Contributed by NM, 11-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)
|
|
Ref |
Expression |
|
Hypotheses |
lmod0cl.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
|
|
lmod0cl.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
|
|
lmod0cl.z |
⊢ 0 = ( 0g ‘ 𝐹 ) |
|
Assertion |
lmod0cl |
⊢ ( 𝑊 ∈ LMod → 0 ∈ 𝐾 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
lmod0cl.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
2 |
|
lmod0cl.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
3 |
|
lmod0cl.z |
⊢ 0 = ( 0g ‘ 𝐹 ) |
4 |
1
|
lmodring |
⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Ring ) |
5 |
2 3
|
ring0cl |
⊢ ( 𝐹 ∈ Ring → 0 ∈ 𝐾 ) |
6 |
4 5
|
syl |
⊢ ( 𝑊 ∈ LMod → 0 ∈ 𝐾 ) |