Metamath Proof Explorer


Theorem lmod0cl

Description: The ring zero in a left module belongs to the ring base set. (Contributed by NM, 11-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmod0cl.f F = Scalar W
lmod0cl.k K = Base F
lmod0cl.z 0 ˙ = 0 F
Assertion lmod0cl W LMod 0 ˙ K

Proof

Step Hyp Ref Expression
1 lmod0cl.f F = Scalar W
2 lmod0cl.k K = Base F
3 lmod0cl.z 0 ˙ = 0 F
4 1 lmodring W LMod F Ring
5 2 3 ring0cl F Ring 0 ˙ K
6 4 5 syl W LMod 0 ˙ K