Metamath Proof Explorer


Theorem lmod1cl

Description: The ring unit in a left module belongs to the ring base set. (Contributed by NM, 11-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmod1cl.f F = Scalar W
lmod1cl.k K = Base F
lmod1cl.u 1 ˙ = 1 F
Assertion lmod1cl W LMod 1 ˙ K

Proof

Step Hyp Ref Expression
1 lmod1cl.f F = Scalar W
2 lmod1cl.k K = Base F
3 lmod1cl.u 1 ˙ = 1 F
4 1 lmodring W LMod F Ring
5 2 3 ringidcl F Ring 1 ˙ K
6 4 5 syl W LMod 1 ˙ K