Metamath Proof Explorer


Theorem lmod1cl

Description: The ring unit in a left module belongs to the ring base set. (Contributed by NM, 11-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmod1cl.f 𝐹 = ( Scalar ‘ 𝑊 )
lmod1cl.k 𝐾 = ( Base ‘ 𝐹 )
lmod1cl.u 1 = ( 1r𝐹 )
Assertion lmod1cl ( 𝑊 ∈ LMod → 1𝐾 )

Proof

Step Hyp Ref Expression
1 lmod1cl.f 𝐹 = ( Scalar ‘ 𝑊 )
2 lmod1cl.k 𝐾 = ( Base ‘ 𝐹 )
3 lmod1cl.u 1 = ( 1r𝐹 )
4 1 lmodring ( 𝑊 ∈ LMod → 𝐹 ∈ Ring )
5 2 3 ringidcl ( 𝐹 ∈ Ring → 1𝐾 )
6 4 5 syl ( 𝑊 ∈ LMod → 1𝐾 )