Metamath Proof Explorer
Description: The ring unit in a left module belongs to the ring base set.
(Contributed by NM, 11-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)
|
|
Ref |
Expression |
|
Hypotheses |
lmod1cl.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
|
|
lmod1cl.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
|
|
lmod1cl.u |
⊢ 1 = ( 1r ‘ 𝐹 ) |
|
Assertion |
lmod1cl |
⊢ ( 𝑊 ∈ LMod → 1 ∈ 𝐾 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
lmod1cl.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
2 |
|
lmod1cl.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
3 |
|
lmod1cl.u |
⊢ 1 = ( 1r ‘ 𝐹 ) |
4 |
1
|
lmodring |
⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Ring ) |
5 |
2 3
|
ringidcl |
⊢ ( 𝐹 ∈ Ring → 1 ∈ 𝐾 ) |
6 |
4 5
|
syl |
⊢ ( 𝑊 ∈ LMod → 1 ∈ 𝐾 ) |