Metamath Proof Explorer


Theorem lmod0cl

Description: The ring zero in a left module belongs to the ring base set. (Contributed by NM, 11-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmod0cl.f
|- F = ( Scalar ` W )
lmod0cl.k
|- K = ( Base ` F )
lmod0cl.z
|- .0. = ( 0g ` F )
Assertion lmod0cl
|- ( W e. LMod -> .0. e. K )

Proof

Step Hyp Ref Expression
1 lmod0cl.f
 |-  F = ( Scalar ` W )
2 lmod0cl.k
 |-  K = ( Base ` F )
3 lmod0cl.z
 |-  .0. = ( 0g ` F )
4 1 lmodring
 |-  ( W e. LMod -> F e. Ring )
5 2 3 ring0cl
 |-  ( F e. Ring -> .0. e. K )
6 4 5 syl
 |-  ( W e. LMod -> .0. e. K )