| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmodfopne.t |  |-  .x. = ( .sf ` W ) | 
						
							| 2 |  | lmodfopne.a |  |-  .+ = ( +f ` W ) | 
						
							| 3 |  | lmodfopne.v |  |-  V = ( Base ` W ) | 
						
							| 4 |  | lmodfopne.s |  |-  S = ( Scalar ` W ) | 
						
							| 5 |  | lmodfopne.k |  |-  K = ( Base ` S ) | 
						
							| 6 |  | lmodfopne.0 |  |-  .0. = ( 0g ` S ) | 
						
							| 7 |  | lmodfopne.1 |  |-  .1. = ( 1r ` S ) | 
						
							| 8 | 1 2 3 4 5 6 7 | lmodfopnelem2 |  |-  ( ( W e. LMod /\ .+ = .x. ) -> ( .0. e. V /\ .1. e. V ) ) | 
						
							| 9 |  | simpl |  |-  ( ( .0. e. V /\ .1. e. V ) -> .0. e. V ) | 
						
							| 10 |  | eqid |  |-  ( 0g ` W ) = ( 0g ` W ) | 
						
							| 11 | 3 10 | lmod0vcl |  |-  ( W e. LMod -> ( 0g ` W ) e. V ) | 
						
							| 12 | 11 | adantr |  |-  ( ( W e. LMod /\ .+ = .x. ) -> ( 0g ` W ) e. V ) | 
						
							| 13 |  | eqid |  |-  ( +g ` W ) = ( +g ` W ) | 
						
							| 14 | 3 13 2 | plusfval |  |-  ( ( .0. e. V /\ ( 0g ` W ) e. V ) -> ( .0. .+ ( 0g ` W ) ) = ( .0. ( +g ` W ) ( 0g ` W ) ) ) | 
						
							| 15 | 14 | eqcomd |  |-  ( ( .0. e. V /\ ( 0g ` W ) e. V ) -> ( .0. ( +g ` W ) ( 0g ` W ) ) = ( .0. .+ ( 0g ` W ) ) ) | 
						
							| 16 | 9 12 15 | syl2anr |  |-  ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .0. ( +g ` W ) ( 0g ` W ) ) = ( .0. .+ ( 0g ` W ) ) ) | 
						
							| 17 |  | oveq |  |-  ( .+ = .x. -> ( .0. .+ ( 0g ` W ) ) = ( .0. .x. ( 0g ` W ) ) ) | 
						
							| 18 | 17 | ad2antlr |  |-  ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .0. .+ ( 0g ` W ) ) = ( .0. .x. ( 0g ` W ) ) ) | 
						
							| 19 | 16 18 | eqtrd |  |-  ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .0. ( +g ` W ) ( 0g ` W ) ) = ( .0. .x. ( 0g ` W ) ) ) | 
						
							| 20 |  | lmodgrp |  |-  ( W e. LMod -> W e. Grp ) | 
						
							| 21 | 20 | adantr |  |-  ( ( W e. LMod /\ .+ = .x. ) -> W e. Grp ) | 
						
							| 22 | 3 13 10 | grprid |  |-  ( ( W e. Grp /\ .0. e. V ) -> ( .0. ( +g ` W ) ( 0g ` W ) ) = .0. ) | 
						
							| 23 | 21 9 22 | syl2an |  |-  ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .0. ( +g ` W ) ( 0g ` W ) ) = .0. ) | 
						
							| 24 | 4 5 6 | lmod0cl |  |-  ( W e. LMod -> .0. e. K ) | 
						
							| 25 | 24 11 | jca |  |-  ( W e. LMod -> ( .0. e. K /\ ( 0g ` W ) e. V ) ) | 
						
							| 26 | 25 | adantr |  |-  ( ( W e. LMod /\ .+ = .x. ) -> ( .0. e. K /\ ( 0g ` W ) e. V ) ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .0. e. K /\ ( 0g ` W ) e. V ) ) | 
						
							| 28 |  | eqid |  |-  ( .s ` W ) = ( .s ` W ) | 
						
							| 29 | 3 4 5 1 28 | scafval |  |-  ( ( .0. e. K /\ ( 0g ` W ) e. V ) -> ( .0. .x. ( 0g ` W ) ) = ( .0. ( .s ` W ) ( 0g ` W ) ) ) | 
						
							| 30 | 27 29 | syl |  |-  ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .0. .x. ( 0g ` W ) ) = ( .0. ( .s ` W ) ( 0g ` W ) ) ) | 
						
							| 31 | 24 | ancli |  |-  ( W e. LMod -> ( W e. LMod /\ .0. e. K ) ) | 
						
							| 32 | 31 | adantr |  |-  ( ( W e. LMod /\ .+ = .x. ) -> ( W e. LMod /\ .0. e. K ) ) | 
						
							| 33 | 32 | adantr |  |-  ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( W e. LMod /\ .0. e. K ) ) | 
						
							| 34 | 4 28 5 10 | lmodvs0 |  |-  ( ( W e. LMod /\ .0. e. K ) -> ( .0. ( .s ` W ) ( 0g ` W ) ) = ( 0g ` W ) ) | 
						
							| 35 | 33 34 | syl |  |-  ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .0. ( .s ` W ) ( 0g ` W ) ) = ( 0g ` W ) ) | 
						
							| 36 |  | simpr |  |-  ( ( .0. e. V /\ .1. e. V ) -> .1. e. V ) | 
						
							| 37 | 3 13 10 | grprid |  |-  ( ( W e. Grp /\ .1. e. V ) -> ( .1. ( +g ` W ) ( 0g ` W ) ) = .1. ) | 
						
							| 38 | 21 36 37 | syl2an |  |-  ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .1. ( +g ` W ) ( 0g ` W ) ) = .1. ) | 
						
							| 39 | 4 5 7 | lmod1cl |  |-  ( W e. LMod -> .1. e. K ) | 
						
							| 40 | 39 | adantr |  |-  ( ( W e. LMod /\ .+ = .x. ) -> .1. e. K ) | 
						
							| 41 | 3 4 5 1 28 | scafval |  |-  ( ( .1. e. K /\ .1. e. V ) -> ( .1. .x. .1. ) = ( .1. ( .s ` W ) .1. ) ) | 
						
							| 42 | 40 36 41 | syl2an |  |-  ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .1. .x. .1. ) = ( .1. ( .s ` W ) .1. ) ) | 
						
							| 43 | 3 4 28 7 | lmodvs1 |  |-  ( ( W e. LMod /\ .1. e. V ) -> ( .1. ( .s ` W ) .1. ) = .1. ) | 
						
							| 44 | 43 | ad2ant2rl |  |-  ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .1. ( .s ` W ) .1. ) = .1. ) | 
						
							| 45 | 42 44 | eqtrd |  |-  ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .1. .x. .1. ) = .1. ) | 
						
							| 46 |  | oveq |  |-  ( .+ = .x. -> ( .1. .+ .1. ) = ( .1. .x. .1. ) ) | 
						
							| 47 | 46 | eqcomd |  |-  ( .+ = .x. -> ( .1. .x. .1. ) = ( .1. .+ .1. ) ) | 
						
							| 48 | 47 | ad2antlr |  |-  ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .1. .x. .1. ) = ( .1. .+ .1. ) ) | 
						
							| 49 | 36 36 | jca |  |-  ( ( .0. e. V /\ .1. e. V ) -> ( .1. e. V /\ .1. e. V ) ) | 
						
							| 50 | 49 | adantl |  |-  ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .1. e. V /\ .1. e. V ) ) | 
						
							| 51 | 3 13 2 | plusfval |  |-  ( ( .1. e. V /\ .1. e. V ) -> ( .1. .+ .1. ) = ( .1. ( +g ` W ) .1. ) ) | 
						
							| 52 | 50 51 | syl |  |-  ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .1. .+ .1. ) = ( .1. ( +g ` W ) .1. ) ) | 
						
							| 53 | 48 52 | eqtrd |  |-  ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .1. .x. .1. ) = ( .1. ( +g ` W ) .1. ) ) | 
						
							| 54 | 38 45 53 | 3eqtr2d |  |-  ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .1. ( +g ` W ) ( 0g ` W ) ) = ( .1. ( +g ` W ) .1. ) ) | 
						
							| 55 | 21 | adantr |  |-  ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> W e. Grp ) | 
						
							| 56 | 12 | adantr |  |-  ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( 0g ` W ) e. V ) | 
						
							| 57 | 36 | adantl |  |-  ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> .1. e. V ) | 
						
							| 58 | 3 13 | grplcan |  |-  ( ( W e. Grp /\ ( ( 0g ` W ) e. V /\ .1. e. V /\ .1. e. V ) ) -> ( ( .1. ( +g ` W ) ( 0g ` W ) ) = ( .1. ( +g ` W ) .1. ) <-> ( 0g ` W ) = .1. ) ) | 
						
							| 59 | 55 56 57 57 58 | syl13anc |  |-  ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( ( .1. ( +g ` W ) ( 0g ` W ) ) = ( .1. ( +g ` W ) .1. ) <-> ( 0g ` W ) = .1. ) ) | 
						
							| 60 | 54 59 | mpbid |  |-  ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( 0g ` W ) = .1. ) | 
						
							| 61 | 30 35 60 | 3eqtrd |  |-  ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .0. .x. ( 0g ` W ) ) = .1. ) | 
						
							| 62 | 19 23 61 | 3eqtr3rd |  |-  ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> .1. = .0. ) | 
						
							| 63 | 8 62 | mpdan |  |-  ( ( W e. LMod /\ .+ = .x. ) -> .1. = .0. ) | 
						
							| 64 | 63 | ex |  |-  ( W e. LMod -> ( .+ = .x. -> .1. = .0. ) ) | 
						
							| 65 | 64 | necon3d |  |-  ( W e. LMod -> ( .1. =/= .0. -> .+ =/= .x. ) ) | 
						
							| 66 | 65 | imp |  |-  ( ( W e. LMod /\ .1. =/= .0. ) -> .+ =/= .x. ) |