Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | scaffval.b | |- B = ( Base ` W ) |
|
| scaffval.f | |- F = ( Scalar ` W ) |
||
| scaffval.k | |- K = ( Base ` F ) |
||
| scaffval.a | |- .xb = ( .sf ` W ) |
||
| scaffval.s | |- .x. = ( .s ` W ) |
||
| Assertion | scafval | |- ( ( X e. K /\ Y e. B ) -> ( X .xb Y ) = ( X .x. Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scaffval.b | |- B = ( Base ` W ) |
|
| 2 | scaffval.f | |- F = ( Scalar ` W ) |
|
| 3 | scaffval.k | |- K = ( Base ` F ) |
|
| 4 | scaffval.a | |- .xb = ( .sf ` W ) |
|
| 5 | scaffval.s | |- .x. = ( .s ` W ) |
|
| 6 | oveq12 | |- ( ( x = X /\ y = Y ) -> ( x .x. y ) = ( X .x. Y ) ) |
|
| 7 | 1 2 3 4 5 | scaffval | |- .xb = ( x e. K , y e. B |-> ( x .x. y ) ) |
| 8 | ovex | |- ( X .x. Y ) e. _V |
|
| 9 | 6 7 8 | ovmpoa | |- ( ( X e. K /\ Y e. B ) -> ( X .xb Y ) = ( X .x. Y ) ) |