Metamath Proof Explorer


Theorem scafval

Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses scaffval.b
|- B = ( Base ` W )
scaffval.f
|- F = ( Scalar ` W )
scaffval.k
|- K = ( Base ` F )
scaffval.a
|- .xb = ( .sf ` W )
scaffval.s
|- .x. = ( .s ` W )
Assertion scafval
|- ( ( X e. K /\ Y e. B ) -> ( X .xb Y ) = ( X .x. Y ) )

Proof

Step Hyp Ref Expression
1 scaffval.b
 |-  B = ( Base ` W )
2 scaffval.f
 |-  F = ( Scalar ` W )
3 scaffval.k
 |-  K = ( Base ` F )
4 scaffval.a
 |-  .xb = ( .sf ` W )
5 scaffval.s
 |-  .x. = ( .s ` W )
6 oveq12
 |-  ( ( x = X /\ y = Y ) -> ( x .x. y ) = ( X .x. Y ) )
7 1 2 3 4 5 scaffval
 |-  .xb = ( x e. K , y e. B |-> ( x .x. y ) )
8 ovex
 |-  ( X .x. Y ) e. _V
9 6 7 8 ovmpoa
 |-  ( ( X e. K /\ Y e. B ) -> ( X .xb Y ) = ( X .x. Y ) )