Description: If the scalar multiplication operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | scaffval.b | |- B = ( Base ` W ) |
|
| scaffval.f | |- F = ( Scalar ` W ) |
||
| scaffval.k | |- K = ( Base ` F ) |
||
| scaffval.a | |- .xb = ( .sf ` W ) |
||
| scaffval.s | |- .x. = ( .s ` W ) |
||
| Assertion | scafeq | |- ( .x. Fn ( K X. B ) -> .xb = .x. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scaffval.b | |- B = ( Base ` W ) |
|
| 2 | scaffval.f | |- F = ( Scalar ` W ) |
|
| 3 | scaffval.k | |- K = ( Base ` F ) |
|
| 4 | scaffval.a | |- .xb = ( .sf ` W ) |
|
| 5 | scaffval.s | |- .x. = ( .s ` W ) |
|
| 6 | 1 2 3 4 5 | scaffval | |- .xb = ( x e. K , y e. B |-> ( x .x. y ) ) |
| 7 | fnov | |- ( .x. Fn ( K X. B ) <-> .x. = ( x e. K , y e. B |-> ( x .x. y ) ) ) |
|
| 8 | 7 | biimpi | |- ( .x. Fn ( K X. B ) -> .x. = ( x e. K , y e. B |-> ( x .x. y ) ) ) |
| 9 | 6 8 | eqtr4id | |- ( .x. Fn ( K X. B ) -> .xb = .x. ) |