| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dffn5 | 
							 |-  ( F Fn ( A X. B ) <-> F = ( z e. ( A X. B ) |-> ( F ` z ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							fveq2 | 
							 |-  ( z = <. x , y >. -> ( F ` z ) = ( F ` <. x , y >. ) )  | 
						
						
							| 3 | 
							
								
							 | 
							df-ov | 
							 |-  ( x F y ) = ( F ` <. x , y >. )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							eqtr4di | 
							 |-  ( z = <. x , y >. -> ( F ` z ) = ( x F y ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							mpompt | 
							 |-  ( z e. ( A X. B ) |-> ( F ` z ) ) = ( x e. A , y e. B |-> ( x F y ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							eqeq2i | 
							 |-  ( F = ( z e. ( A X. B ) |-> ( F ` z ) ) <-> F = ( x e. A , y e. B |-> ( x F y ) ) )  | 
						
						
							| 7 | 
							
								1 6
							 | 
							bitri | 
							 |-  ( F Fn ( A X. B ) <-> F = ( x e. A , y e. B |-> ( x F y ) ) )  |