| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmodfopne.t |  |-  .x. = ( .sf ` W ) | 
						
							| 2 |  | lmodfopne.a |  |-  .+ = ( +f ` W ) | 
						
							| 3 |  | lmodfopne.v |  |-  V = ( Base ` W ) | 
						
							| 4 |  | lmodfopne.s |  |-  S = ( Scalar ` W ) | 
						
							| 5 |  | lmodfopne.k |  |-  K = ( Base ` S ) | 
						
							| 6 |  | lmodfopne.0 |  |-  .0. = ( 0g ` S ) | 
						
							| 7 |  | lmodfopne.1 |  |-  .1. = ( 1r ` S ) | 
						
							| 8 | 1 2 3 4 5 | lmodfopnelem1 |  |-  ( ( W e. LMod /\ .+ = .x. ) -> V = K ) | 
						
							| 9 | 8 | ex |  |-  ( W e. LMod -> ( .+ = .x. -> V = K ) ) | 
						
							| 10 | 4 5 6 | lmod0cl |  |-  ( W e. LMod -> .0. e. K ) | 
						
							| 11 | 4 5 7 | lmod1cl |  |-  ( W e. LMod -> .1. e. K ) | 
						
							| 12 | 10 11 | jca |  |-  ( W e. LMod -> ( .0. e. K /\ .1. e. K ) ) | 
						
							| 13 |  | eleq2 |  |-  ( V = K -> ( .0. e. V <-> .0. e. K ) ) | 
						
							| 14 |  | eleq2 |  |-  ( V = K -> ( .1. e. V <-> .1. e. K ) ) | 
						
							| 15 | 13 14 | anbi12d |  |-  ( V = K -> ( ( .0. e. V /\ .1. e. V ) <-> ( .0. e. K /\ .1. e. K ) ) ) | 
						
							| 16 | 12 15 | syl5ibrcom |  |-  ( W e. LMod -> ( V = K -> ( .0. e. V /\ .1. e. V ) ) ) | 
						
							| 17 | 9 16 | syld |  |-  ( W e. LMod -> ( .+ = .x. -> ( .0. e. V /\ .1. e. V ) ) ) | 
						
							| 18 | 17 | imp |  |-  ( ( W e. LMod /\ .+ = .x. ) -> ( .0. e. V /\ .1. e. V ) ) |