| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmodfopne.t | ⊢  ·   =  (  ·sf  ‘ 𝑊 ) | 
						
							| 2 |  | lmodfopne.a | ⊢  +   =  ( +𝑓 ‘ 𝑊 ) | 
						
							| 3 |  | lmodfopne.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 4 |  | lmodfopne.s | ⊢ 𝑆  =  ( Scalar ‘ 𝑊 ) | 
						
							| 5 |  | lmodfopne.k | ⊢ 𝐾  =  ( Base ‘ 𝑆 ) | 
						
							| 6 |  | lmodfopne.0 | ⊢  0   =  ( 0g ‘ 𝑆 ) | 
						
							| 7 |  | lmodfopne.1 | ⊢  1   =  ( 1r ‘ 𝑆 ) | 
						
							| 8 | 1 2 3 4 5 | lmodfopnelem1 | ⊢ ( ( 𝑊  ∈  LMod  ∧   +   =   ·  )  →  𝑉  =  𝐾 ) | 
						
							| 9 | 8 | ex | ⊢ ( 𝑊  ∈  LMod  →  (  +   =   ·   →  𝑉  =  𝐾 ) ) | 
						
							| 10 | 4 5 6 | lmod0cl | ⊢ ( 𝑊  ∈  LMod  →   0   ∈  𝐾 ) | 
						
							| 11 | 4 5 7 | lmod1cl | ⊢ ( 𝑊  ∈  LMod  →   1   ∈  𝐾 ) | 
						
							| 12 | 10 11 | jca | ⊢ ( 𝑊  ∈  LMod  →  (  0   ∈  𝐾  ∧   1   ∈  𝐾 ) ) | 
						
							| 13 |  | eleq2 | ⊢ ( 𝑉  =  𝐾  →  (  0   ∈  𝑉  ↔   0   ∈  𝐾 ) ) | 
						
							| 14 |  | eleq2 | ⊢ ( 𝑉  =  𝐾  →  (  1   ∈  𝑉  ↔   1   ∈  𝐾 ) ) | 
						
							| 15 | 13 14 | anbi12d | ⊢ ( 𝑉  =  𝐾  →  ( (  0   ∈  𝑉  ∧   1   ∈  𝑉 )  ↔  (  0   ∈  𝐾  ∧   1   ∈  𝐾 ) ) ) | 
						
							| 16 | 12 15 | syl5ibrcom | ⊢ ( 𝑊  ∈  LMod  →  ( 𝑉  =  𝐾  →  (  0   ∈  𝑉  ∧   1   ∈  𝑉 ) ) ) | 
						
							| 17 | 9 16 | syld | ⊢ ( 𝑊  ∈  LMod  →  (  +   =   ·   →  (  0   ∈  𝑉  ∧   1   ∈  𝑉 ) ) ) | 
						
							| 18 | 17 | imp | ⊢ ( ( 𝑊  ∈  LMod  ∧   +   =   ·  )  →  (  0   ∈  𝑉  ∧   1   ∈  𝑉 ) ) |