Metamath Proof Explorer


Theorem lmodfopnelem2

Description: Lemma 2 for lmodfopne . (Contributed by AV, 2-Oct-2021)

Ref Expression
Hypotheses lmodfopne.t ·˙=𝑠𝑓W
lmodfopne.a +˙=+𝑓W
lmodfopne.v V=BaseW
lmodfopne.s S=ScalarW
lmodfopne.k K=BaseS
lmodfopne.0 0˙=0S
lmodfopne.1 1˙=1S
Assertion lmodfopnelem2 WLMod+˙=·˙0˙V1˙V

Proof

Step Hyp Ref Expression
1 lmodfopne.t ·˙=𝑠𝑓W
2 lmodfopne.a +˙=+𝑓W
3 lmodfopne.v V=BaseW
4 lmodfopne.s S=ScalarW
5 lmodfopne.k K=BaseS
6 lmodfopne.0 0˙=0S
7 lmodfopne.1 1˙=1S
8 1 2 3 4 5 lmodfopnelem1 WLMod+˙=·˙V=K
9 8 ex WLMod+˙=·˙V=K
10 4 5 6 lmod0cl WLMod0˙K
11 4 5 7 lmod1cl WLMod1˙K
12 10 11 jca WLMod0˙K1˙K
13 eleq2 V=K0˙V0˙K
14 eleq2 V=K1˙V1˙K
15 13 14 anbi12d V=K0˙V1˙V0˙K1˙K
16 12 15 syl5ibrcom WLModV=K0˙V1˙V
17 9 16 syld WLMod+˙=·˙0˙V1˙V
18 17 imp WLMod+˙=·˙0˙V1˙V