| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmodfopne.t |  |-  .x. = ( .sf ` W ) | 
						
							| 2 |  | lmodfopne.a |  |-  .+ = ( +f ` W ) | 
						
							| 3 |  | lmodfopne.v |  |-  V = ( Base ` W ) | 
						
							| 4 |  | lmodfopne.s |  |-  S = ( Scalar ` W ) | 
						
							| 5 |  | lmodfopne.k |  |-  K = ( Base ` S ) | 
						
							| 6 | 3 4 5 1 | lmodscaf |  |-  ( W e. LMod -> .x. : ( K X. V ) --> V ) | 
						
							| 7 | 6 | ffnd |  |-  ( W e. LMod -> .x. Fn ( K X. V ) ) | 
						
							| 8 | 3 2 | plusffn |  |-  .+ Fn ( V X. V ) | 
						
							| 9 |  | fneq1 |  |-  ( .+ = .x. -> ( .+ Fn ( V X. V ) <-> .x. Fn ( V X. V ) ) ) | 
						
							| 10 |  | fndmu |  |-  ( ( .x. Fn ( V X. V ) /\ .x. Fn ( K X. V ) ) -> ( V X. V ) = ( K X. V ) ) | 
						
							| 11 | 10 | ex |  |-  ( .x. Fn ( V X. V ) -> ( .x. Fn ( K X. V ) -> ( V X. V ) = ( K X. V ) ) ) | 
						
							| 12 | 9 11 | biimtrdi |  |-  ( .+ = .x. -> ( .+ Fn ( V X. V ) -> ( .x. Fn ( K X. V ) -> ( V X. V ) = ( K X. V ) ) ) ) | 
						
							| 13 | 12 | com13 |  |-  ( .x. Fn ( K X. V ) -> ( .+ Fn ( V X. V ) -> ( .+ = .x. -> ( V X. V ) = ( K X. V ) ) ) ) | 
						
							| 14 | 13 | impcom |  |-  ( ( .+ Fn ( V X. V ) /\ .x. Fn ( K X. V ) ) -> ( .+ = .x. -> ( V X. V ) = ( K X. V ) ) ) | 
						
							| 15 | 3 | lmodbn0 |  |-  ( W e. LMod -> V =/= (/) ) | 
						
							| 16 |  | xp11 |  |-  ( ( V =/= (/) /\ V =/= (/) ) -> ( ( V X. V ) = ( K X. V ) <-> ( V = K /\ V = V ) ) ) | 
						
							| 17 | 15 15 16 | syl2anc |  |-  ( W e. LMod -> ( ( V X. V ) = ( K X. V ) <-> ( V = K /\ V = V ) ) ) | 
						
							| 18 | 17 | simprbda |  |-  ( ( W e. LMod /\ ( V X. V ) = ( K X. V ) ) -> V = K ) | 
						
							| 19 | 18 | expcom |  |-  ( ( V X. V ) = ( K X. V ) -> ( W e. LMod -> V = K ) ) | 
						
							| 20 | 14 19 | syl6 |  |-  ( ( .+ Fn ( V X. V ) /\ .x. Fn ( K X. V ) ) -> ( .+ = .x. -> ( W e. LMod -> V = K ) ) ) | 
						
							| 21 | 20 | com23 |  |-  ( ( .+ Fn ( V X. V ) /\ .x. Fn ( K X. V ) ) -> ( W e. LMod -> ( .+ = .x. -> V = K ) ) ) | 
						
							| 22 | 21 | ex |  |-  ( .+ Fn ( V X. V ) -> ( .x. Fn ( K X. V ) -> ( W e. LMod -> ( .+ = .x. -> V = K ) ) ) ) | 
						
							| 23 | 22 | com23 |  |-  ( .+ Fn ( V X. V ) -> ( W e. LMod -> ( .x. Fn ( K X. V ) -> ( .+ = .x. -> V = K ) ) ) ) | 
						
							| 24 | 8 23 | ax-mp |  |-  ( W e. LMod -> ( .x. Fn ( K X. V ) -> ( .+ = .x. -> V = K ) ) ) | 
						
							| 25 | 7 24 | mpd |  |-  ( W e. LMod -> ( .+ = .x. -> V = K ) ) | 
						
							| 26 | 25 | imp |  |-  ( ( W e. LMod /\ .+ = .x. ) -> V = K ) |