Metamath Proof Explorer


Theorem lmodvs1

Description: Scalar product with ring unit. ( ax-hvmulid analog.) (Contributed by NM, 10-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmodvs1.v
|- V = ( Base ` W )
lmodvs1.f
|- F = ( Scalar ` W )
lmodvs1.s
|- .x. = ( .s ` W )
lmodvs1.u
|- .1. = ( 1r ` F )
Assertion lmodvs1
|- ( ( W e. LMod /\ X e. V ) -> ( .1. .x. X ) = X )

Proof

Step Hyp Ref Expression
1 lmodvs1.v
 |-  V = ( Base ` W )
2 lmodvs1.f
 |-  F = ( Scalar ` W )
3 lmodvs1.s
 |-  .x. = ( .s ` W )
4 lmodvs1.u
 |-  .1. = ( 1r ` F )
5 simpl
 |-  ( ( W e. LMod /\ X e. V ) -> W e. LMod )
6 eqid
 |-  ( Base ` F ) = ( Base ` F )
7 2 6 4 lmod1cl
 |-  ( W e. LMod -> .1. e. ( Base ` F ) )
8 7 adantr
 |-  ( ( W e. LMod /\ X e. V ) -> .1. e. ( Base ` F ) )
9 simpr
 |-  ( ( W e. LMod /\ X e. V ) -> X e. V )
10 eqid
 |-  ( +g ` W ) = ( +g ` W )
11 eqid
 |-  ( +g ` F ) = ( +g ` F )
12 eqid
 |-  ( .r ` F ) = ( .r ` F )
13 1 10 3 2 6 11 12 4 lmodlema
 |-  ( ( W e. LMod /\ ( .1. e. ( Base ` F ) /\ .1. e. ( Base ` F ) ) /\ ( X e. V /\ X e. V ) ) -> ( ( ( .1. .x. X ) e. V /\ ( .1. .x. ( X ( +g ` W ) X ) ) = ( ( .1. .x. X ) ( +g ` W ) ( .1. .x. X ) ) /\ ( ( .1. ( +g ` F ) .1. ) .x. X ) = ( ( .1. .x. X ) ( +g ` W ) ( .1. .x. X ) ) ) /\ ( ( ( .1. ( .r ` F ) .1. ) .x. X ) = ( .1. .x. ( .1. .x. X ) ) /\ ( .1. .x. X ) = X ) ) )
14 13 simprrd
 |-  ( ( W e. LMod /\ ( .1. e. ( Base ` F ) /\ .1. e. ( Base ` F ) ) /\ ( X e. V /\ X e. V ) ) -> ( .1. .x. X ) = X )
15 5 8 8 9 9 14 syl122anc
 |-  ( ( W e. LMod /\ X e. V ) -> ( .1. .x. X ) = X )