Metamath Proof Explorer


Theorem lmodvsmmulgdi

Description: Distributive law for a group multiple of a scalar multiplication. (Contributed by AV, 2-Sep-2019)

Ref Expression
Hypotheses lmodvsmmulgdi.v V=BaseW
lmodvsmmulgdi.f F=ScalarW
lmodvsmmulgdi.s ·˙=W
lmodvsmmulgdi.k K=BaseF
lmodvsmmulgdi.p ×˙=W
lmodvsmmulgdi.e E=F
Assertion lmodvsmmulgdi WLModCKN0XVN×˙C·˙X=NEC·˙X

Proof

Step Hyp Ref Expression
1 lmodvsmmulgdi.v V=BaseW
2 lmodvsmmulgdi.f F=ScalarW
3 lmodvsmmulgdi.s ·˙=W
4 lmodvsmmulgdi.k K=BaseF
5 lmodvsmmulgdi.p ×˙=W
6 lmodvsmmulgdi.e E=F
7 oveq1 x=0x×˙C·˙X=0×˙C·˙X
8 oveq1 x=0xEC=0EC
9 8 oveq1d x=0xEC·˙X=0EC·˙X
10 7 9 eqeq12d x=0x×˙C·˙X=xEC·˙X0×˙C·˙X=0EC·˙X
11 10 imbi2d x=0CKXVWLModx×˙C·˙X=xEC·˙XCKXVWLMod0×˙C·˙X=0EC·˙X
12 oveq1 x=yx×˙C·˙X=y×˙C·˙X
13 oveq1 x=yxEC=yEC
14 13 oveq1d x=yxEC·˙X=yEC·˙X
15 12 14 eqeq12d x=yx×˙C·˙X=xEC·˙Xy×˙C·˙X=yEC·˙X
16 15 imbi2d x=yCKXVWLModx×˙C·˙X=xEC·˙XCKXVWLMody×˙C·˙X=yEC·˙X
17 oveq1 x=y+1x×˙C·˙X=y+1×˙C·˙X
18 oveq1 x=y+1xEC=y+1EC
19 18 oveq1d x=y+1xEC·˙X=y+1EC·˙X
20 17 19 eqeq12d x=y+1x×˙C·˙X=xEC·˙Xy+1×˙C·˙X=y+1EC·˙X
21 20 imbi2d x=y+1CKXVWLModx×˙C·˙X=xEC·˙XCKXVWLMody+1×˙C·˙X=y+1EC·˙X
22 oveq1 x=Nx×˙C·˙X=N×˙C·˙X
23 oveq1 x=NxEC=NEC
24 23 oveq1d x=NxEC·˙X=NEC·˙X
25 22 24 eqeq12d x=Nx×˙C·˙X=xEC·˙XN×˙C·˙X=NEC·˙X
26 25 imbi2d x=NCKXVWLModx×˙C·˙X=xEC·˙XCKXVWLModN×˙C·˙X=NEC·˙X
27 simpr CKXVWLModWLMod
28 simpr CKXVXV
29 28 adantr CKXVWLModXV
30 eqid 0F=0F
31 eqid 0W=0W
32 1 2 3 30 31 lmod0vs WLModXV0F·˙X=0W
33 27 29 32 syl2anc CKXVWLMod0F·˙X=0W
34 simpl CKXVCK
35 34 adantr CKXVWLModCK
36 4 30 6 mulg0 CK0EC=0F
37 35 36 syl CKXVWLMod0EC=0F
38 37 oveq1d CKXVWLMod0EC·˙X=0F·˙X
39 1 2 3 4 lmodvscl WLModCKXVC·˙XV
40 27 35 29 39 syl3anc CKXVWLModC·˙XV
41 1 31 5 mulg0 C·˙XV0×˙C·˙X=0W
42 40 41 syl CKXVWLMod0×˙C·˙X=0W
43 33 38 42 3eqtr4rd CKXVWLMod0×˙C·˙X=0EC·˙X
44 lmodgrp WLModWGrp
45 44 grpmndd WLModWMnd
46 45 ad2antll y0CKXVWLModWMnd
47 simpl y0CKXVWLMody0
48 40 adantl y0CKXVWLModC·˙XV
49 eqid +W=+W
50 1 5 49 mulgnn0p1 WMndy0C·˙XVy+1×˙C·˙X=y×˙C·˙X+WC·˙X
51 46 47 48 50 syl3anc y0CKXVWLMody+1×˙C·˙X=y×˙C·˙X+WC·˙X
52 51 adantr y0CKXVWLMody×˙C·˙X=yEC·˙Xy+1×˙C·˙X=y×˙C·˙X+WC·˙X
53 oveq1 y×˙C·˙X=yEC·˙Xy×˙C·˙X+WC·˙X=yEC·˙X+WC·˙X
54 27 adantl y0CKXVWLModWLMod
55 2 lmodring WLModFRing
56 ringmnd FRingFMnd
57 55 56 syl WLModFMnd
58 57 ad2antll y0CKXVWLModFMnd
59 simprll y0CKXVWLModCK
60 4 6 58 47 59 mulgnn0cld y0CKXVWLModyECK
61 29 adantl y0CKXVWLModXV
62 eqid +F=+F
63 1 49 2 3 4 62 lmodvsdir WLModyECKCKXVyEC+FC·˙X=yEC·˙X+WC·˙X
64 54 60 59 61 63 syl13anc y0CKXVWLModyEC+FC·˙X=yEC·˙X+WC·˙X
65 4 6 62 mulgnn0p1 FMndy0CKy+1EC=yEC+FC
66 58 47 59 65 syl3anc y0CKXVWLMody+1EC=yEC+FC
67 66 eqcomd y0CKXVWLModyEC+FC=y+1EC
68 67 oveq1d y0CKXVWLModyEC+FC·˙X=y+1EC·˙X
69 64 68 eqtr3d y0CKXVWLModyEC·˙X+WC·˙X=y+1EC·˙X
70 53 69 sylan9eqr y0CKXVWLMody×˙C·˙X=yEC·˙Xy×˙C·˙X+WC·˙X=y+1EC·˙X
71 52 70 eqtrd y0CKXVWLMody×˙C·˙X=yEC·˙Xy+1×˙C·˙X=y+1EC·˙X
72 71 exp31 y0CKXVWLMody×˙C·˙X=yEC·˙Xy+1×˙C·˙X=y+1EC·˙X
73 72 a2d y0CKXVWLMody×˙C·˙X=yEC·˙XCKXVWLMody+1×˙C·˙X=y+1EC·˙X
74 11 16 21 26 43 73 nn0ind N0CKXVWLModN×˙C·˙X=NEC·˙X
75 74 exp4c N0CKXVWLModN×˙C·˙X=NEC·˙X
76 75 3imp21 CKN0XVWLModN×˙C·˙X=NEC·˙X
77 76 impcom WLModCKN0XVN×˙C·˙X=NEC·˙X