Metamath Proof Explorer


Theorem lmodvsdir

Description: Distributive law for scalar product (right-distributivity). ( ax-hvdistr1 analog.) (Contributed by NM, 10-Jan-2014) (Revised by Mario Carneiro, 22-Sep-2015)

Ref Expression
Hypotheses lmodvsdir.v V=BaseW
lmodvsdir.a +˙=+W
lmodvsdir.f F=ScalarW
lmodvsdir.s ·˙=W
lmodvsdir.k K=BaseF
lmodvsdir.p ˙=+F
Assertion lmodvsdir WLModQKRKXVQ˙R·˙X=Q·˙X+˙R·˙X

Proof

Step Hyp Ref Expression
1 lmodvsdir.v V=BaseW
2 lmodvsdir.a +˙=+W
3 lmodvsdir.f F=ScalarW
4 lmodvsdir.s ·˙=W
5 lmodvsdir.k K=BaseF
6 lmodvsdir.p ˙=+F
7 eqid F=F
8 eqid 1F=1F
9 1 2 4 3 5 6 7 8 lmodlema WLModQKRKXVXVR·˙XVR·˙X+˙X=R·˙X+˙R·˙XQ˙R·˙X=Q·˙X+˙R·˙XQFR·˙X=Q·˙R·˙X1F·˙X=X
10 9 simpld WLModQKRKXVXVR·˙XVR·˙X+˙X=R·˙X+˙R·˙XQ˙R·˙X=Q·˙X+˙R·˙X
11 10 simp3d WLModQKRKXVXVQ˙R·˙X=Q·˙X+˙R·˙X
12 11 3expa WLModQKRKXVXVQ˙R·˙X=Q·˙X+˙R·˙X
13 12 anabsan2 WLModQKRKXVQ˙R·˙X=Q·˙X+˙R·˙X
14 13 exp42 WLModQKRKXVQ˙R·˙X=Q·˙X+˙R·˙X
15 14 3imp2 WLModQKRKXVQ˙R·˙X=Q·˙X+˙R·˙X