Metamath Proof Explorer


Theorem lmodvs0

Description: Anything times the zero vector is the zero vector. Equation 1b of Kreyszig p. 51. ( hvmul0 analog.) (Contributed by NM, 12-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmodvs0.f F=ScalarW
lmodvs0.s ·˙=W
lmodvs0.k K=BaseF
lmodvs0.z 0˙=0W
Assertion lmodvs0 WLModXKX·˙0˙=0˙

Proof

Step Hyp Ref Expression
1 lmodvs0.f F=ScalarW
2 lmodvs0.s ·˙=W
3 lmodvs0.k K=BaseF
4 lmodvs0.z 0˙=0W
5 1 lmodring WLModFRing
6 eqid F=F
7 eqid 0F=0F
8 3 6 7 ringrz FRingXKXF0F=0F
9 5 8 sylan WLModXKXF0F=0F
10 9 oveq1d WLModXKXF0F·˙0˙=0F·˙0˙
11 simpl WLModXKWLMod
12 simpr WLModXKXK
13 5 adantr WLModXKFRing
14 3 7 ring0cl FRing0FK
15 13 14 syl WLModXK0FK
16 eqid BaseW=BaseW
17 16 4 lmod0vcl WLMod0˙BaseW
18 17 adantr WLModXK0˙BaseW
19 16 1 2 3 6 lmodvsass WLModXK0FK0˙BaseWXF0F·˙0˙=X·˙0F·˙0˙
20 11 12 15 18 19 syl13anc WLModXKXF0F·˙0˙=X·˙0F·˙0˙
21 16 1 2 7 4 lmod0vs WLMod0˙BaseW0F·˙0˙=0˙
22 18 21 syldan WLModXK0F·˙0˙=0˙
23 22 oveq2d WLModXKX·˙0F·˙0˙=X·˙0˙
24 20 23 eqtrd WLModXKXF0F·˙0˙=X·˙0˙
25 10 24 22 3eqtr3d WLModXKX·˙0˙=0˙