Description: Right identity law for the zero vector. ( ax-hvaddid analog.) (Contributed by NM, 10-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0vlid.v | |- V = ( Base ` W ) | |
| 0vlid.a | |- .+ = ( +g ` W ) | ||
| 0vlid.z | |- .0. = ( 0g ` W ) | ||
| Assertion | lmod0vrid | |- ( ( W e. LMod /\ X e. V ) -> ( X .+ .0. ) = X ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0vlid.v | |- V = ( Base ` W ) | |
| 2 | 0vlid.a | |- .+ = ( +g ` W ) | |
| 3 | 0vlid.z | |- .0. = ( 0g ` W ) | |
| 4 | lmodgrp | |- ( W e. LMod -> W e. Grp ) | |
| 5 | 1 2 3 | grprid | |- ( ( W e. Grp /\ X e. V ) -> ( X .+ .0. ) = X ) | 
| 6 | 4 5 | sylan | |- ( ( W e. LMod /\ X e. V ) -> ( X .+ .0. ) = X ) |