Metamath Proof Explorer


Theorem lmodabl

Description: A left module is an abelian group (of vectors, under addition). (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 25-Jun-2014)

Ref Expression
Assertion lmodabl W LMod W Abel

Proof

Step Hyp Ref Expression
1 eqidd W LMod Base W = Base W
2 eqidd W LMod + W = + W
3 lmodgrp W LMod W Grp
4 eqid Base W = Base W
5 eqid + W = + W
6 4 5 lmodcom W LMod x Base W y Base W x + W y = y + W x
7 1 2 3 6 isabld W LMod W Abel