Metamath Proof Explorer


Theorem lmodass

Description: Left module vector sum is associative. (Contributed by NM, 10-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmodvacl.v V=BaseW
lmodvacl.a +˙=+W
Assertion lmodass WLModXVYVZVX+˙Y+˙Z=X+˙Y+˙Z

Proof

Step Hyp Ref Expression
1 lmodvacl.v V=BaseW
2 lmodvacl.a +˙=+W
3 lmodgrp WLModWGrp
4 1 2 grpass WGrpXVYVZVX+˙Y+˙Z=X+˙Y+˙Z
5 3 4 sylan WLModXVYVZVX+˙Y+˙Z=X+˙Y+˙Z