Metamath Proof Explorer


Theorem lmodacl

Description: Closure of ring addition for a left module. (Contributed by NM, 14-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmodacl.f F = Scalar W
lmodacl.k K = Base F
lmodacl.p + ˙ = + F
Assertion lmodacl W LMod X K Y K X + ˙ Y K

Proof

Step Hyp Ref Expression
1 lmodacl.f F = Scalar W
2 lmodacl.k K = Base F
3 lmodacl.p + ˙ = + F
4 1 lmodfgrp W LMod F Grp
5 2 3 grpcl F Grp X K Y K X + ˙ Y K
6 4 5 syl3an1 W LMod X K Y K X + ˙ Y K