Metamath Proof Explorer


Theorem lmodacl

Description: Closure of ring addition for a left module. (Contributed by NM, 14-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmodacl.f F=ScalarW
lmodacl.k K=BaseF
lmodacl.p +˙=+F
Assertion lmodacl WLModXKYKX+˙YK

Proof

Step Hyp Ref Expression
1 lmodacl.f F=ScalarW
2 lmodacl.k K=BaseF
3 lmodacl.p +˙=+F
4 1 lmodfgrp WLModFGrp
5 2 3 grpcl FGrpXKYKX+˙YK
6 4 5 syl3an1 WLModXKYKX+˙YK