Metamath Proof Explorer


Theorem lmodmcl

Description: Closure of ring multiplication for a left module. (Contributed by NM, 14-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmodmcl.f F = Scalar W
lmodmcl.k K = Base F
lmodmcl.t · ˙ = F
Assertion lmodmcl W LMod X K Y K X · ˙ Y K

Proof

Step Hyp Ref Expression
1 lmodmcl.f F = Scalar W
2 lmodmcl.k K = Base F
3 lmodmcl.t · ˙ = F
4 1 lmodring W LMod F Ring
5 2 3 ringcl F Ring X K Y K X · ˙ Y K
6 4 5 syl3an1 W LMod X K Y K X · ˙ Y K