Metamath Proof Explorer


Theorem lmodmcl

Description: Closure of ring multiplication for a left module. (Contributed by NM, 14-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmodmcl.f F=ScalarW
lmodmcl.k K=BaseF
lmodmcl.t ·˙=F
Assertion lmodmcl WLModXKYKX·˙YK

Proof

Step Hyp Ref Expression
1 lmodmcl.f F=ScalarW
2 lmodmcl.k K=BaseF
3 lmodmcl.t ·˙=F
4 1 lmodring WLModFRing
5 2 3 ringcl FRingXKYKX·˙YK
6 4 5 syl3an1 WLModXKYKX·˙YK