Metamath Proof Explorer
Description: Closure of ring multiplication for a left module. (Contributed by NM, 14-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)
|
|
Ref |
Expression |
|
Hypotheses |
lmodmcl.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
|
|
lmodmcl.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
|
|
lmodmcl.t |
⊢ · = ( .r ‘ 𝐹 ) |
|
Assertion |
lmodmcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → ( 𝑋 · 𝑌 ) ∈ 𝐾 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
lmodmcl.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
2 |
|
lmodmcl.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
3 |
|
lmodmcl.t |
⊢ · = ( .r ‘ 𝐹 ) |
4 |
1
|
lmodring |
⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Ring ) |
5 |
2 3
|
ringcl |
⊢ ( ( 𝐹 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → ( 𝑋 · 𝑌 ) ∈ 𝐾 ) |
6 |
4 5
|
syl3an1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → ( 𝑋 · 𝑌 ) ∈ 𝐾 ) |