Metamath Proof Explorer


Theorem lmodmcl

Description: Closure of ring multiplication for a left module. (Contributed by NM, 14-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmodmcl.f 𝐹 = ( Scalar ‘ 𝑊 )
lmodmcl.k 𝐾 = ( Base ‘ 𝐹 )
lmodmcl.t · = ( .r𝐹 )
Assertion lmodmcl ( ( 𝑊 ∈ LMod ∧ 𝑋𝐾𝑌𝐾 ) → ( 𝑋 · 𝑌 ) ∈ 𝐾 )

Proof

Step Hyp Ref Expression
1 lmodmcl.f 𝐹 = ( Scalar ‘ 𝑊 )
2 lmodmcl.k 𝐾 = ( Base ‘ 𝐹 )
3 lmodmcl.t · = ( .r𝐹 )
4 1 lmodring ( 𝑊 ∈ LMod → 𝐹 ∈ Ring )
5 2 3 ringcl ( ( 𝐹 ∈ Ring ∧ 𝑋𝐾𝑌𝐾 ) → ( 𝑋 · 𝑌 ) ∈ 𝐾 )
6 4 5 syl3an1 ( ( 𝑊 ∈ LMod ∧ 𝑋𝐾𝑌𝐾 ) → ( 𝑋 · 𝑌 ) ∈ 𝐾 )