Metamath Proof Explorer
Description: The set of scalars in a left module is nonempty. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)
|
|
Ref |
Expression |
|
Hypotheses |
lmodsn0.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
|
|
lmodsn0.b |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
|
Assertion |
lmodsn0 |
⊢ ( 𝑊 ∈ LMod → 𝐵 ≠ ∅ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
lmodsn0.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
2 |
|
lmodsn0.b |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
3 |
1
|
lmodfgrp |
⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Grp ) |
4 |
2
|
grpbn0 |
⊢ ( 𝐹 ∈ Grp → 𝐵 ≠ ∅ ) |
5 |
3 4
|
syl |
⊢ ( 𝑊 ∈ LMod → 𝐵 ≠ ∅ ) |