Metamath Proof Explorer


Theorem lmodfgrp

Description: The scalar component of a left module is an additive group. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypothesis lmodring.1 𝐹 = ( Scalar ‘ 𝑊 )
Assertion lmodfgrp ( 𝑊 ∈ LMod → 𝐹 ∈ Grp )

Proof

Step Hyp Ref Expression
1 lmodring.1 𝐹 = ( Scalar ‘ 𝑊 )
2 1 lmodring ( 𝑊 ∈ LMod → 𝐹 ∈ Ring )
3 ringgrp ( 𝐹 ∈ Ring → 𝐹 ∈ Grp )
4 2 3 syl ( 𝑊 ∈ LMod → 𝐹 ∈ Grp )