Metamath Proof Explorer


Theorem lmodfgrp

Description: The scalar component of a left module is an additive group. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypothesis lmodring.1
|- F = ( Scalar ` W )
Assertion lmodfgrp
|- ( W e. LMod -> F e. Grp )

Proof

Step Hyp Ref Expression
1 lmodring.1
 |-  F = ( Scalar ` W )
2 1 lmodring
 |-  ( W e. LMod -> F e. Ring )
3 ringgrp
 |-  ( F e. Ring -> F e. Grp )
4 2 3 syl
 |-  ( W e. LMod -> F e. Grp )