Metamath Proof Explorer


Theorem lmodgrpd

Description: A left module is a group. (Contributed by SN, 16-May-2024)

Ref Expression
Hypothesis lmodgrpd.1
|- ( ph -> W e. LMod )
Assertion lmodgrpd
|- ( ph -> W e. Grp )

Proof

Step Hyp Ref Expression
1 lmodgrpd.1
 |-  ( ph -> W e. LMod )
2 lmodgrp
 |-  ( W e. LMod -> W e. Grp )
3 1 2 syl
 |-  ( ph -> W e. Grp )