Metamath Proof Explorer


Theorem lmodgrpd

Description: A left module is a group. (Contributed by SN, 16-May-2024)

Ref Expression
Hypothesis lmodgrpd.1 ( 𝜑𝑊 ∈ LMod )
Assertion lmodgrpd ( 𝜑𝑊 ∈ Grp )

Proof

Step Hyp Ref Expression
1 lmodgrpd.1 ( 𝜑𝑊 ∈ LMod )
2 lmodgrp ( 𝑊 ∈ LMod → 𝑊 ∈ Grp )
3 1 2 syl ( 𝜑𝑊 ∈ Grp )