Metamath Proof Explorer


Theorem lmodsn0

Description: The set of scalars in a left module is nonempty. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmodsn0.f
|- F = ( Scalar ` W )
lmodsn0.b
|- B = ( Base ` F )
Assertion lmodsn0
|- ( W e. LMod -> B =/= (/) )

Proof

Step Hyp Ref Expression
1 lmodsn0.f
 |-  F = ( Scalar ` W )
2 lmodsn0.b
 |-  B = ( Base ` F )
3 1 lmodfgrp
 |-  ( W e. LMod -> F e. Grp )
4 2 grpbn0
 |-  ( F e. Grp -> B =/= (/) )
5 3 4 syl
 |-  ( W e. LMod -> B =/= (/) )