Metamath Proof Explorer


Theorem lmodacl

Description: Closure of ring addition for a left module. (Contributed by NM, 14-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmodacl.f
|- F = ( Scalar ` W )
lmodacl.k
|- K = ( Base ` F )
lmodacl.p
|- .+ = ( +g ` F )
Assertion lmodacl
|- ( ( W e. LMod /\ X e. K /\ Y e. K ) -> ( X .+ Y ) e. K )

Proof

Step Hyp Ref Expression
1 lmodacl.f
 |-  F = ( Scalar ` W )
2 lmodacl.k
 |-  K = ( Base ` F )
3 lmodacl.p
 |-  .+ = ( +g ` F )
4 1 lmodfgrp
 |-  ( W e. LMod -> F e. Grp )
5 2 3 grpcl
 |-  ( ( F e. Grp /\ X e. K /\ Y e. K ) -> ( X .+ Y ) e. K )
6 4 5 syl3an1
 |-  ( ( W e. LMod /\ X e. K /\ Y e. K ) -> ( X .+ Y ) e. K )