Description: Closure of ring addition for a left module. (Contributed by NM, 14-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lmodacl.f | |- F = ( Scalar ` W ) |
|
lmodacl.k | |- K = ( Base ` F ) |
||
lmodacl.p | |- .+ = ( +g ` F ) |
||
Assertion | lmodacl | |- ( ( W e. LMod /\ X e. K /\ Y e. K ) -> ( X .+ Y ) e. K ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodacl.f | |- F = ( Scalar ` W ) |
|
2 | lmodacl.k | |- K = ( Base ` F ) |
|
3 | lmodacl.p | |- .+ = ( +g ` F ) |
|
4 | 1 | lmodfgrp | |- ( W e. LMod -> F e. Grp ) |
5 | 2 3 | grpcl | |- ( ( F e. Grp /\ X e. K /\ Y e. K ) -> ( X .+ Y ) e. K ) |
6 | 4 5 | syl3an1 | |- ( ( W e. LMod /\ X e. K /\ Y e. K ) -> ( X .+ Y ) e. K ) |