Metamath Proof Explorer


Theorem lmodacl

Description: Closure of ring addition for a left module. (Contributed by NM, 14-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmodacl.f 𝐹 = ( Scalar ‘ 𝑊 )
lmodacl.k 𝐾 = ( Base ‘ 𝐹 )
lmodacl.p + = ( +g𝐹 )
Assertion lmodacl ( ( 𝑊 ∈ LMod ∧ 𝑋𝐾𝑌𝐾 ) → ( 𝑋 + 𝑌 ) ∈ 𝐾 )

Proof

Step Hyp Ref Expression
1 lmodacl.f 𝐹 = ( Scalar ‘ 𝑊 )
2 lmodacl.k 𝐾 = ( Base ‘ 𝐹 )
3 lmodacl.p + = ( +g𝐹 )
4 1 lmodfgrp ( 𝑊 ∈ LMod → 𝐹 ∈ Grp )
5 2 3 grpcl ( ( 𝐹 ∈ Grp ∧ 𝑋𝐾𝑌𝐾 ) → ( 𝑋 + 𝑌 ) ∈ 𝐾 )
6 4 5 syl3an1 ( ( 𝑊 ∈ LMod ∧ 𝑋𝐾𝑌𝐾 ) → ( 𝑋 + 𝑌 ) ∈ 𝐾 )