Metamath Proof Explorer
Description: Closure of ring addition for a left module. (Contributed by NM, 14-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)
|
|
Ref |
Expression |
|
Hypotheses |
lmodacl.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
|
|
lmodacl.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
|
|
lmodacl.p |
⊢ + = ( +g ‘ 𝐹 ) |
|
Assertion |
lmodacl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → ( 𝑋 + 𝑌 ) ∈ 𝐾 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
lmodacl.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
2 |
|
lmodacl.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
3 |
|
lmodacl.p |
⊢ + = ( +g ‘ 𝐹 ) |
4 |
1
|
lmodfgrp |
⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Grp ) |
5 |
2 3
|
grpcl |
⊢ ( ( 𝐹 ∈ Grp ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → ( 𝑋 + 𝑌 ) ∈ 𝐾 ) |
6 |
4 5
|
syl3an1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → ( 𝑋 + 𝑌 ) ∈ 𝐾 ) |