Metamath Proof Explorer


Theorem lmodvsdi

Description: Distributive law for scalar product (left-distributivity). ( ax-hvdistr1 analog.) (Contributed by NM, 10-Jan-2014) (Revised by Mario Carneiro, 22-Sep-2015)

Ref Expression
Hypotheses lmodvsdi.v V=BaseW
lmodvsdi.a +˙=+W
lmodvsdi.f F=ScalarW
lmodvsdi.s ·˙=W
lmodvsdi.k K=BaseF
Assertion lmodvsdi WLModRKXVYVR·˙X+˙Y=R·˙X+˙R·˙Y

Proof

Step Hyp Ref Expression
1 lmodvsdi.v V=BaseW
2 lmodvsdi.a +˙=+W
3 lmodvsdi.f F=ScalarW
4 lmodvsdi.s ·˙=W
5 lmodvsdi.k K=BaseF
6 eqid +F=+F
7 eqid F=F
8 eqid 1F=1F
9 1 2 4 3 5 6 7 8 lmodlema WLModRKRKYVXVR·˙XVR·˙X+˙Y=R·˙X+˙R·˙YR+FR·˙X=R·˙X+˙R·˙XRFR·˙X=R·˙R·˙X1F·˙X=X
10 9 simpld WLModRKRKYVXVR·˙XVR·˙X+˙Y=R·˙X+˙R·˙YR+FR·˙X=R·˙X+˙R·˙X
11 10 simp2d WLModRKRKYVXVR·˙X+˙Y=R·˙X+˙R·˙Y
12 11 3expia WLModRKRKYVXVR·˙X+˙Y=R·˙X+˙R·˙Y
13 12 anabsan2 WLModRKYVXVR·˙X+˙Y=R·˙X+˙R·˙Y
14 13 exp4b WLModRKYVXVR·˙X+˙Y=R·˙X+˙R·˙Y
15 14 com34 WLModRKXVYVR·˙X+˙Y=R·˙X+˙R·˙Y
16 15 3imp2 WLModRKXVYVR·˙X+˙Y=R·˙X+˙R·˙Y