Metamath Proof Explorer


Theorem lmodvsubcl

Description: Closure of vector subtraction. ( hvsubcl analog.) (Contributed by NM, 31-Mar-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmodvsubcl.v
|- V = ( Base ` W )
lmodvsubcl.m
|- .- = ( -g ` W )
Assertion lmodvsubcl
|- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> ( X .- Y ) e. V )

Proof

Step Hyp Ref Expression
1 lmodvsubcl.v
 |-  V = ( Base ` W )
2 lmodvsubcl.m
 |-  .- = ( -g ` W )
3 lmodgrp
 |-  ( W e. LMod -> W e. Grp )
4 1 2 grpsubcl
 |-  ( ( W e. Grp /\ X e. V /\ Y e. V ) -> ( X .- Y ) e. V )
5 3 4 syl3an1
 |-  ( ( W e. LMod /\ X e. V /\ Y e. V ) -> ( X .- Y ) e. V )