Description: Closure of vector subtraction. ( hvsubcl analog.) (Contributed by NM, 31-Mar-2014) (Revised by Mario Carneiro, 19-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lmodvsubcl.v | |- V = ( Base ` W ) |
|
lmodvsubcl.m | |- .- = ( -g ` W ) |
||
Assertion | lmodvsubcl | |- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> ( X .- Y ) e. V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodvsubcl.v | |- V = ( Base ` W ) |
|
2 | lmodvsubcl.m | |- .- = ( -g ` W ) |
|
3 | lmodgrp | |- ( W e. LMod -> W e. Grp ) |
|
4 | 1 2 | grpsubcl | |- ( ( W e. Grp /\ X e. V /\ Y e. V ) -> ( X .- Y ) e. V ) |
5 | 3 4 | syl3an1 | |- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> ( X .- Y ) e. V ) |