Metamath Proof Explorer


Theorem lmodvsubcl

Description: Closure of vector subtraction. ( hvsubcl analog.) (Contributed by NM, 31-Mar-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmodvsubcl.v 𝑉 = ( Base ‘ 𝑊 )
lmodvsubcl.m = ( -g𝑊 )
Assertion lmodvsubcl ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉 ) → ( 𝑋 𝑌 ) ∈ 𝑉 )

Proof

Step Hyp Ref Expression
1 lmodvsubcl.v 𝑉 = ( Base ‘ 𝑊 )
2 lmodvsubcl.m = ( -g𝑊 )
3 lmodgrp ( 𝑊 ∈ LMod → 𝑊 ∈ Grp )
4 1 2 grpsubcl ( ( 𝑊 ∈ Grp ∧ 𝑋𝑉𝑌𝑉 ) → ( 𝑋 𝑌 ) ∈ 𝑉 )
5 3 4 syl3an1 ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉 ) → ( 𝑋 𝑌 ) ∈ 𝑉 )