Metamath Proof Explorer


Theorem ipdi

Description: Distributive law for inner product (left-distributivity). (Contributed by NM, 20-Nov-2007) (Revised by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses phlsrng.f F = Scalar W
phllmhm.h , ˙ = 𝑖 W
phllmhm.v V = Base W
ipdir.g + ˙ = + W
ipdir.p ˙ = + F
Assertion ipdi W PreHil A V B V C V A , ˙ B + ˙ C = A , ˙ B ˙ A , ˙ C

Proof

Step Hyp Ref Expression
1 phlsrng.f F = Scalar W
2 phllmhm.h , ˙ = 𝑖 W
3 phllmhm.v V = Base W
4 ipdir.g + ˙ = + W
5 ipdir.p ˙ = + F
6 simpl W PreHil A V B V C V W PreHil
7 simpr2 W PreHil A V B V C V B V
8 simpr3 W PreHil A V B V C V C V
9 simpr1 W PreHil A V B V C V A V
10 1 2 3 4 5 ipdir W PreHil B V C V A V B + ˙ C , ˙ A = B , ˙ A ˙ C , ˙ A
11 6 7 8 9 10 syl13anc W PreHil A V B V C V B + ˙ C , ˙ A = B , ˙ A ˙ C , ˙ A
12 11 fveq2d W PreHil A V B V C V B + ˙ C , ˙ A * F = B , ˙ A ˙ C , ˙ A * F
13 1 phlsrng W PreHil F *-Ring
14 13 adantr W PreHil A V B V C V F *-Ring
15 eqid Base F = Base F
16 1 2 3 15 ipcl W PreHil B V A V B , ˙ A Base F
17 6 7 9 16 syl3anc W PreHil A V B V C V B , ˙ A Base F
18 1 2 3 15 ipcl W PreHil C V A V C , ˙ A Base F
19 6 8 9 18 syl3anc W PreHil A V B V C V C , ˙ A Base F
20 eqid * F = * F
21 20 15 5 srngadd F *-Ring B , ˙ A Base F C , ˙ A Base F B , ˙ A ˙ C , ˙ A * F = B , ˙ A * F ˙ C , ˙ A * F
22 14 17 19 21 syl3anc W PreHil A V B V C V B , ˙ A ˙ C , ˙ A * F = B , ˙ A * F ˙ C , ˙ A * F
23 12 22 eqtrd W PreHil A V B V C V B + ˙ C , ˙ A * F = B , ˙ A * F ˙ C , ˙ A * F
24 phllmod W PreHil W LMod
25 24 adantr W PreHil A V B V C V W LMod
26 3 4 lmodvacl W LMod B V C V B + ˙ C V
27 25 7 8 26 syl3anc W PreHil A V B V C V B + ˙ C V
28 1 2 3 20 ipcj W PreHil B + ˙ C V A V B + ˙ C , ˙ A * F = A , ˙ B + ˙ C
29 6 27 9 28 syl3anc W PreHil A V B V C V B + ˙ C , ˙ A * F = A , ˙ B + ˙ C
30 1 2 3 20 ipcj W PreHil B V A V B , ˙ A * F = A , ˙ B
31 6 7 9 30 syl3anc W PreHil A V B V C V B , ˙ A * F = A , ˙ B
32 1 2 3 20 ipcj W PreHil C V A V C , ˙ A * F = A , ˙ C
33 6 8 9 32 syl3anc W PreHil A V B V C V C , ˙ A * F = A , ˙ C
34 31 33 oveq12d W PreHil A V B V C V B , ˙ A * F ˙ C , ˙ A * F = A , ˙ B ˙ A , ˙ C
35 23 29 34 3eqtr3d W PreHil A V B V C V A , ˙ B + ˙ C = A , ˙ B ˙ A , ˙ C