| Step |
Hyp |
Ref |
Expression |
| 1 |
|
phlsrng.f |
|
| 2 |
|
phllmhm.h |
|
| 3 |
|
phllmhm.v |
|
| 4 |
|
ipdir.g |
|
| 5 |
|
ipdir.p |
|
| 6 |
|
simpl |
|
| 7 |
|
simpr2 |
|
| 8 |
|
simpr3 |
|
| 9 |
|
simpr1 |
|
| 10 |
1 2 3 4 5
|
ipdir |
|
| 11 |
6 7 8 9 10
|
syl13anc |
|
| 12 |
11
|
fveq2d |
|
| 13 |
1
|
phlsrng |
|
| 14 |
13
|
adantr |
|
| 15 |
|
eqid |
|
| 16 |
1 2 3 15
|
ipcl |
|
| 17 |
6 7 9 16
|
syl3anc |
|
| 18 |
1 2 3 15
|
ipcl |
|
| 19 |
6 8 9 18
|
syl3anc |
|
| 20 |
|
eqid |
|
| 21 |
20 15 5
|
srngadd |
|
| 22 |
14 17 19 21
|
syl3anc |
|
| 23 |
12 22
|
eqtrd |
|
| 24 |
|
phllmod |
|
| 25 |
24
|
adantr |
|
| 26 |
3 4
|
lmodvacl |
|
| 27 |
25 7 8 26
|
syl3anc |
|
| 28 |
1 2 3 20
|
ipcj |
|
| 29 |
6 27 9 28
|
syl3anc |
|
| 30 |
1 2 3 20
|
ipcj |
|
| 31 |
6 7 9 30
|
syl3anc |
|
| 32 |
1 2 3 20
|
ipcj |
|
| 33 |
6 8 9 32
|
syl3anc |
|
| 34 |
31 33
|
oveq12d |
|
| 35 |
23 29 34
|
3eqtr3d |
|