Metamath Proof Explorer


Theorem srngadd

Description: The involution function in a star ring distributes over addition. (Contributed by Mario Carneiro, 6-Oct-2015)

Ref Expression
Hypotheses srngcl.i ˙=*R
srngcl.b B=BaseR
srngadd.p +˙=+R
Assertion srngadd R*-RingXBYB˙X+˙Y=˙X+˙˙Y

Proof

Step Hyp Ref Expression
1 srngcl.i ˙=*R
2 srngcl.b B=BaseR
3 srngadd.p +˙=+R
4 eqid opprR=opprR
5 eqid 𝑟𝑓R=𝑟𝑓R
6 4 5 srngrhm R*-Ring𝑟𝑓RRRingHomopprR
7 rhmghm 𝑟𝑓RRRingHomopprR𝑟𝑓RRGrpHomopprR
8 6 7 syl R*-Ring𝑟𝑓RRGrpHomopprR
9 4 3 oppradd +˙=+opprR
10 2 3 9 ghmlin 𝑟𝑓RRGrpHomopprRXBYB𝑟𝑓RX+˙Y=𝑟𝑓RX+˙𝑟𝑓RY
11 8 10 syl3an1 R*-RingXBYB𝑟𝑓RX+˙Y=𝑟𝑓RX+˙𝑟𝑓RY
12 srngring R*-RingRRing
13 2 3 ringacl RRingXBYBX+˙YB
14 12 13 syl3an1 R*-RingXBYBX+˙YB
15 2 1 5 stafval X+˙YB𝑟𝑓RX+˙Y=˙X+˙Y
16 14 15 syl R*-RingXBYB𝑟𝑓RX+˙Y=˙X+˙Y
17 2 1 5 stafval XB𝑟𝑓RX=˙X
18 17 3ad2ant2 R*-RingXBYB𝑟𝑓RX=˙X
19 2 1 5 stafval YB𝑟𝑓RY=˙Y
20 19 3ad2ant3 R*-RingXBYB𝑟𝑓RY=˙Y
21 18 20 oveq12d R*-RingXBYB𝑟𝑓RX+˙𝑟𝑓RY=˙X+˙˙Y
22 11 16 21 3eqtr3d R*-RingXBYB˙X+˙Y=˙X+˙˙Y