Metamath Proof Explorer


Theorem stafval

Description: The functionalization of the involution component of a structure. (Contributed by Mario Carneiro, 6-Oct-2015)

Ref Expression
Hypotheses staffval.b B=BaseR
staffval.i ˙=*R
staffval.f ˙=𝑟𝑓R
Assertion stafval AB˙A=˙A

Proof

Step Hyp Ref Expression
1 staffval.b B=BaseR
2 staffval.i ˙=*R
3 staffval.f ˙=𝑟𝑓R
4 fveq2 x=A˙x=˙A
5 1 2 3 staffval ˙=xB˙x
6 fvex ˙AV
7 4 5 6 fvmpt AB˙A=˙A